Computing the (forcing) strong metric dimension in strongly annihilating-ideal graphs

被引:0
|
作者
Pazoki, M. [1 ]
Nikandish, R. [2 ]
机构
[1] Islamic Azad Univ, Dept Math, Parand Branch, Parand, Iran
[2] Jundi Shapur Univ Technol, Dept Math, POB 64615-334, Dezful, Iran
关键词
Strong metric dimension; Forcing strong metric dimension; Strong resolving set; Strongly annihilating-ideal graph;
D O I
10.1007/s00200-023-00601-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The strongly annihilating-ideal graph SAG(R) of a commutative unital ring R is a simple graph whose vertices are non-zero ideals of R with non-zero annihilator and there exists an edge between two distinct vertices if and only if each of them has a non-zero intersection with annihilator of the other one. In this paper, we compute twin-free clique number of SAG(R) and as an application strong metric dimension of SAG(R) is given. Moreover, we investigate the structures of strong resolving sets in SAG(R) to find forcing strong metric dimension in SAG(R).
引用
收藏
页码:273 / 283
页数:11
相关论文
共 50 条
  • [41] The strong metric dimension of graphs and digraphs
    Oellermann, Ortrud R.
    Peters-Fransen, Joel
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (03) : 356 - 364
  • [42] On strong metric dimension of graphs and their complements
    Yi, Eunjeong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (08) : 1479 - 1492
  • [43] On Strong Metric Dimension of Graphs and Their Complements
    Eunjeong YI
    Acta Mathematica Sinica, 2013, 29 (08) : 1479 - 1492
  • [44] Computing the Metric Dimension of Gear Graphs
    Imran, Shahid
    Siddiqui, Muhammad Kamran
    Imran, Muhammad
    Hussain, Muhammad
    Bilal, Hafiz Muhammad
    Cheema, Imran Zulficiar
    Tabraiz, Ali
    Saleem, Zeeshan
    SYMMETRY-BASEL, 2018, 10 (06):
  • [45] Computing the metric dimension for chain graphs
    Fernau, Henning
    Heggernes, Pinar
    van't Hof, Pim
    Meister, Daniel
    Saei, Reza
    INFORMATION PROCESSING LETTERS, 2015, 115 (09) : 671 - 676
  • [46] On the Strong Metric Dimension of Cartesian Sum Graphs
    Kuziak, Dorota
    Yero, Ismael G.
    Rodriguez-Velazquez, Juan A.
    FUNDAMENTA INFORMATICAE, 2015, 141 (01) : 57 - 69
  • [47] The Local Metric Dimension of Strong Product Graphs
    Barragan-Ramirez, Gabriel A.
    Rodriguez-Velazquez, Juan A.
    GRAPHS AND COMBINATORICS, 2016, 32 (04) : 1263 - 1278
  • [48] Strong metric dimension of rooted product graphs
    Kuziak, Dorota
    Yero, Ismael G.
    Rodriguez-Velazquez, Juan A.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (08) : 1265 - 1280
  • [49] Computing the metric dimension of graphs by genetic algorithms
    Kratica, Jozef
    Kovacevic-Vujcic, Vera
    Cangalovic, Mirjana
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2009, 44 (02) : 343 - 361
  • [50] Computing the k-metric dimension of graphs
    Yero, Ismael G.
    Estrada-Moreno, Alejandro
    Rodriguez-Velazquez, Juan A.
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 300 : 60 - 69