Computing the (forcing) strong metric dimension in strongly annihilating-ideal graphs

被引:0
|
作者
Pazoki, M. [1 ]
Nikandish, R. [2 ]
机构
[1] Islamic Azad Univ, Dept Math, Parand Branch, Parand, Iran
[2] Jundi Shapur Univ Technol, Dept Math, POB 64615-334, Dezful, Iran
关键词
Strong metric dimension; Forcing strong metric dimension; Strong resolving set; Strongly annihilating-ideal graph;
D O I
10.1007/s00200-023-00601-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The strongly annihilating-ideal graph SAG(R) of a commutative unital ring R is a simple graph whose vertices are non-zero ideals of R with non-zero annihilator and there exists an edge between two distinct vertices if and only if each of them has a non-zero intersection with annihilator of the other one. In this paper, we compute twin-free clique number of SAG(R) and as an application strong metric dimension of SAG(R) is given. Moreover, we investigate the structures of strong resolving sets in SAG(R) to find forcing strong metric dimension in SAG(R).
引用
收藏
页码:273 / 283
页数:11
相关论文
共 50 条
  • [31] LINE GRAPHS ASSOCIATED TO ANNIHILATING-IDEAL GRAPH ATTACHED TO LATTICES OF GENUS ONE
    Parsapour, Atossa
    Javaheri, Khadijeh Ahmad
    TRANSACTIONS ON COMBINATORICS, 2023, 12 (04) : 175 - 190
  • [32] The Forcing Metric Dimension of a Total Graph of Nonzero Annihilating Ideals
    M. Pazoki
    Ukrainian Mathematical Journal, 2023, 75 : 964 - 971
  • [33] Strong metric dimension of the prime ideal sum graphs of commutative rings
    Mathil, Praveen
    Kumar, Jitender
    Nikandish, Reza
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [34] The Forcing Metric Dimension of a Total Graph of Nonzero Annihilating Ideals
    Pazoki, M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2023, 75 (06) : 964 - 971
  • [35] THE FORCING STRONG METRIC DIMENSION OF A GRAPH
    Lenin, R.
    Kathiresan, K. M.
    Baca, M.
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2017, 12 (02) : 1 - 10
  • [36] The metric dimension of strong product graphs
    Rodriguez-Velazquez, Juan A.
    Kuziak, Dorota
    Yero, Ismael G.
    Sigarreta, Jose M.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2015, 31 (02) : 261 - 268
  • [37] On strong metric dimension of graphs and their complements
    Eunjeong Yi
    Acta Mathematica Sinica, English Series, 2013, 29 : 1479 - 1492
  • [38] On Strong Metric Dimension of Graphs and Their Complements
    Eunjeong YI
    Acta Mathematica Sinica,English Series, 2013, (08) : 1479 - 1492
  • [39] On the fractional strong metric dimension of graphs
    Kang, Cong X.
    DISCRETE APPLIED MATHEMATICS, 2016, 213 : 153 - 161
  • [40] On the strong metric dimension of permutation graphs
    Yi, E. (yie@tamug.edu), 1600, Charles Babbage Research Centre (90):