Computing the (forcing) strong metric dimension in strongly annihilating-ideal graphs

被引:0
|
作者
Pazoki, M. [1 ]
Nikandish, R. [2 ]
机构
[1] Islamic Azad Univ, Dept Math, Parand Branch, Parand, Iran
[2] Jundi Shapur Univ Technol, Dept Math, POB 64615-334, Dezful, Iran
关键词
Strong metric dimension; Forcing strong metric dimension; Strong resolving set; Strongly annihilating-ideal graph;
D O I
10.1007/s00200-023-00601-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The strongly annihilating-ideal graph SAG(R) of a commutative unital ring R is a simple graph whose vertices are non-zero ideals of R with non-zero annihilator and there exists an edge between two distinct vertices if and only if each of them has a non-zero intersection with annihilator of the other one. In this paper, we compute twin-free clique number of SAG(R) and as an application strong metric dimension of SAG(R) is given. Moreover, we investigate the structures of strong resolving sets in SAG(R) to find forcing strong metric dimension in SAG(R).
引用
收藏
页码:273 / 283
页数:11
相关论文
共 50 条
  • [1] On the metric dimension of strongly annihilating-ideal graphs of commutative rings
    Soleymanivarniab, V
    Nikandish, R.
    Tehranian, A.
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2020, 12 (02) : 358 - 369
  • [2] Metric and Upper Dimension of Extended Annihilating-Ideal Graphs
    Nithya, S.
    Elavarasi, G.
    ALGEBRA COLLOQUIUM, 2024, 31 (02) : 221 - 238
  • [3] Strong metric dimension in annihilating-ideal graph of commutative rings
    Jalali, Mitra
    Nikandish, Reza
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2024, 35 (05) : 615 - 627
  • [4] THE METRIC DIMENSION OF THE ANNIHILATING-IDEAL GRAPH OF A FINITE COMMUTATIVE RING
    Dolzan, David
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 103 (03) : 362 - 368
  • [5] Annihilating-ideal graphs of commutative rings
    Aijaz, M.
    Pirzada, S.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (07)
  • [6] Some Results on Annihilating-ideal Graphs
    Shaveisi, Farzad
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (03): : 641 - 651
  • [7] ON WEAKLY PERFECT ANNIHILATING-IDEAL GRAPHS
    Kadu, Ganesh S.
    Joshi, Vinayak
    Gonde, Samruddha
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 104 (03) : 362 - 372
  • [8] On Eulerianity and Hamiltonicity in Annihilating-ideal Graphs
    Kourehpaz, A.
    Nikandish, R.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2021, 16 (01): : 97 - 104
  • [9] Some classes of perfect strongly annihilating-ideal graphs associated with commutative rings
    Jalali, Mitra
    Tehranian, Aboulfazl
    Nikandish, Reza
    Rasouli, Hamid
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2020, 61 (01): : 27 - 34
  • [10] The Classification of the Annihilating-Ideal Graphs of Commutative Rings
    Aalipour, G.
    Akbar, S.
    Behboodi, M.
    Nikandish, R.
    Nikmehr, M. J.
    Shaveisi, F.
    ALGEBRA COLLOQUIUM, 2014, 21 (02) : 249 - 256