Marine biological waste as a source of hydroxyapatite for bone tissue engineering applications

被引:19
|
作者
Borciani, Giorgia [1 ]
Fischetti, Tiziana [1 ]
Ciapetti, Gabriela [2 ]
Montesissa, Matteo [1 ]
Baldini, Nicola [1 ,2 ]
Graziani, Gabriela [2 ]
机构
[1] Univ Bologna, Dept Biomed & Neuromotor Sci, Via Massarenti 9, I-40138 Bologna, Italy
[2] IRCCS Ist Ortoped Rizzoli, Biomed Sci & Technol & Nanobiotechnol Lab, Via Barbiano 1-10, I-40136 Bologna, Italy
关键词
Calcination A; Apatite D; Biomedical applications E; Nanocomposites B; CUTTLEFISH BONE; MECHANICAL-PROPERTIES; BIOGENIC HYDROXYAPATITE; SCAFFOLDS; ORIGIN; BIOMINERALIZATION; BIOMATERIALS; RESTORATION; CONVERSION; SUBSTITUTE;
D O I
10.1016/j.ceramint.2022.10.341
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The demand for bone graft substitutes for orthopedics and dentistry is constantly growing due to the increase of ageing-related diseases. Synthetic hydroxyapatite (HA) is largely used as a bone graft material thanks to its biocompatibility, osteointegration, osteoconductive and osteoinductive properties and similarity to biological apatite, the main mineral component of bones and teeth. Biogenic apatite has gained attention due to its peculiar intrinsic characteristics: multi-doped ion composition and micro- and nano-scale architecture make naturalderived HA particularly promising for biomedical applications. At the same time, the growing interest in green materials is pushing towards the use of more sustainable biomaterials precursors, including re-use materials: marine waste, such as mollusk-shells, shellfish carapaces, cuttlefish bone, and fishbone have become widely studied sources of biogenic HA. Indeed, they are rich in calcium carbonate (CaCO3), which can be converted into HA by environmentally sustainable processes. This allows the transformation of waste into valuable materials, while paying attention to the issues of sustainability and circular economy. In this review, we listed and discussed the methods to produce HA starting from shell-derived CaCO3, describing all the steps and synthesis routes proposed for the conversion procedure, with a special focus on the different species of marine shells used. We discussed the use of HA alone or in combination with other materials (natural and synthetic polymers), used to enhance the mechanical and biological properties. We summarized the types of devices obtained by marine-derived HA, including nanorods, particulates and scaffolds and we described their in vitro and in vivo behavior. The up-to-date literature was summarized in tables with a special focus on the in vitro and in vivo biological evaluation of such materials. In conclusion, composite biomaterials based on marine-derived biogenic HA are reported as potential candidates for synthetic bone substitutes highlighting their potential, limitations and future perspectives.
引用
收藏
页码:1572 / 1584
页数:13
相关论文
共 50 条
  • [31] Nano-hydroxyapatite/β-CD/chitosan nanocomposite for potential applications in bone tissue engineering
    Shakir, Mohammad
    Jolly, Reshma
    Khan, Mohd Shoeb
    Rauf, Ahmar
    Kazmi, Shadab
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2016, 93 : 276 - 289
  • [32] Electrospun eri silk fibroin scaffold coated with hydroxyapatite for bone tissue engineering applications
    Muthumanickkam Andiappan
    Subramanian Sundaramoorthy
    Niladrinath Panda
    Gowri Meiyazhaban
    Sofi Beaula Winfred
    Ganesh Venkataraman
    Pramanik Krishna
    Progress in Biomaterials, 2013, 2 (1)
  • [33] Electrospun eri silk fibroin scaffold coated with hydroxyapatite for bone tissue engineering applications
    Andiappan, Muthumanickkam
    Sundaramoorthy, Subramanian
    Panda, Niladrinath
    Meiyazhaban, Gowri
    Winfred, Sofi Beaula
    Venkataraman, Ganesh
    Krishna, Pramanik
    PROGRESS IN BIOMATERIALS, 2013, 2 (01)
  • [34] Synthesis, characterization and in-vitro study of hydroxyapatite, silver substituted hydroxyapatite and iron substituted hydroxyapatite for bone tissue engineering applications
    Sharma, Sonia
    Goyal, Parveen
    RESULTS IN CHEMISTRY, 2025, 15
  • [35] Mineralized alginate hydrogels using marine carbonates for bone tissue engineering applications
    Diaz-Rodriguez, P.
    Garcia-Trinanes, P.
    Echezarreta Lopez, M. M.
    Santovena, A.
    Landin, M.
    CARBOHYDRATE POLYMERS, 2018, 195 : 235 - 242
  • [36] Biodegradable polyphosphazene - hydroxyapatite composites for bone tissue engineering
    Subash, Alsha
    Basanth, Abina
    Kandasubramanian, Balasubramanian
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2023, 72 (14) : 1093 - 1111
  • [37] Latest Research of Doped Hydroxyapatite for Bone Tissue Engineering
    Radulescu, Diana-Elena
    Vasile, Otilia Ruxandra
    Andronescu, Ecaterina
    Ficai, Anton
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (17)
  • [38] A novel Polycaprolactone/Hydroxyapatite scaffold for bone tissue engineering
    Song, Ho-Hyun
    Yoo, Mi-Kyong
    Moon, Hyun-Seuk
    Choi, Yun-Jaie
    Lee, Hyun-Chul
    Cho, Chong-Su
    ASBM7: ADVANCED BIOMATERIALS VII, 2007, 342-343 : 265 - +
  • [39] Chitosan/hydroxyapatite hybrid scaffold for bone tissue engineering
    Brun, V.
    Guillaume, C.
    Alami, S. Mechiche
    Josse, J.
    Jing, J.
    Draux, F.
    Bouthors, S.
    Laurent-Maquin, D.
    Gangloff, S. C.
    Kerdjoudj, H.
    Velard, F.
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2014, 24 : S63 - S73
  • [40] Preparation of porous hydroxyapatite scaffolds for bone tissue engineering
    Min, Sang-Ho
    Jin, Hyeong-Ho
    Park, Hoy-Yul
    Park, Ik-Min
    Park, Hong-Chae
    Yoon, Seog-Young
    ECO-MATERIALS PROCESSING & DESIGN VII, 2006, 510-511 : 754 - 757