A Spatio-Temporal Graph Convolutional Network for Gesture Recognition from High-Density Electromyography

被引:0
|
作者
Zhong, Wenjuan [1 ]
Zhang, Yuyang [1 ]
Fu, Peiwen [1 ]
Xiong, Wenxuan [1 ]
Zhang, Mingming [1 ]
机构
[1] Southern Univ Sci & Technol, Dept Biomed Engn, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph convolution networks; gesture recognition; Human-machine interface; high density sEMG; Muscle network;
D O I
10.1109/M2VIP58386.2023.10413402
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate hand gesture prediction is crucial for effective upper-limb prosthetic limbs control. As the high flexibility and multiple degrees of freedom exhibited by human hands, there has been a growing interest in integrating deep networks with high-density surface electromyography (HD-sEMG) grids to enhance gesture recognition capabilities. However, many existing methods fall short in fully exploit the specific spatial topology and temporal dependencies present in HD-sEMG data. Additionally, these studies are often limited number of gestures and lack generality. Hence, this study introduces a novel gesture recognition method, named STGCN-GR, which leverages spatio-temporal graph convolution networks for HD-sEMG-based human-machine interfaces. Firstly, we construct muscle networks based on functional connectivity between channels, creating a graph representation of HD-sEMG recordings. Subsequently, a temporal convolution module is applied to capture the temporal dependences in the HD-sEMG series and a spatial graph convolution module is employed to effectively learn the intrinsic spatial topology information among distinct HD-sEMG channels. We evaluate our proposed model on a public HD-sEMG dataset comprising a substantial number of gestures (i.e., 65). Our results demonstrate the remarkable capability of the STGCN-GR method, achieving an impressive accuracy of 91.07% in predicting gestures, which surpasses state-of-the-art deep learning methods applied to the same dataset.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Classify EEG and Reveal Latent Graph Structure with Spatio-Temporal Graph Convolutional Neural Network
    Li, Xiaoyu
    Qian, Buyue
    Wei, Jishang
    Li, An
    Liu, Xuan
    Zheng, Qinghua
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 389 - 398
  • [42] Group Behavior Pattern Recognition Algorithm Based on Spatio-Temporal Graph Convolutional Networks
    Chen, Xinfang
    Dinavahi, Venkata
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [43] Spatio-Temporal Inception Graph Convolutional Networks for Skeleton-Based Action Recognition
    Huang, Zhen
    Shen, Xu
    Tian, Xinmei
    Li, Houqiang
    Huang, Jianqiang
    Hua, Xian-Sheng
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 2122 - 2130
  • [44] Hand gesture recognition based on motor unit spike trains decoded from high-density electromyography
    Chen, Chen
    Yu, Yang
    Ma, Shihan
    Sheng, Xinjun
    Lin, Chuang
    Farina, Dario
    Zhu, Xiangyang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 55 (55)
  • [45] Spatio-temporal patterns of wildlife-vehicle collisions in a region with a high-density road network
    Morelle, Kevin
    Lehaire, Francois
    Lejeune, Philippe
    NATURE CONSERVATION-BULGARIA, 2013, (05): : 53 - 73
  • [46] A residual graph convolutional network with spatio-temporal features for autism classification from fMRI brain images
    Park, Kyoung-Won
    Cho, Sung-Bae
    APPLIED SOFT COMPUTING, 2023, 142
  • [47] Fault Diagnosis of Gearbox Based on Refined Topology and Spatio-Temporal Graph Convolutional Network
    Xiang, Wei
    Liu, Shujie
    Li, Hongkun
    Cao, Shunxin
    Zhang, Kongliang
    Yang, Chen
    IEEE SENSORS JOURNAL, 2024, 24 (02) : 1866 - 1879
  • [48] Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting
    Huo, Guangyu
    Zhang, Yong
    Wang, Boyue
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 3855 - 3867
  • [49] Traffic Flow Forecasting of Graph Convolutional Network Based on Spatio-Temporal Attention Mechanism
    Hong Zhang
    Linlong Chen
    Jie Cao
    Xijun Zhang
    Sunan Kan
    Tianxin Zhao
    International Journal of Automotive Technology, 2023, 24 : 1013 - 1023
  • [50] Forecasting traffic speed using spatio-temporal hybrid dilated graph convolutional network
    Zhang, Lei
    Guo, Quansheng
    Li, Dong
    Pan, Jiaxing
    Wei, Chuyuan
    Lin, Jianxin
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-TRANSPORT, 2021, 177 (02) : 80 - 89