Chern Flat and Chern Ricci-Flat Twisted Product Hermitian Manifolds

被引:0
|
作者
Li, Shuwen [1 ]
He, Yong [1 ]
Lu, Weina [1 ]
Yang, Ruijia [1 ]
机构
[1] Xinjiang Normal Univ, Sch Math Sci, Urumqi 830017, Peoples R China
基金
中国国家自然科学基金;
关键词
Hermitian manifold; twisted product; holomorphic sectional curvature; Chern flat; Chern Ricci-flat;
D O I
10.3390/math12030449
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M1,g) and (M2,h) be two Hermitian manifolds. The twisted product Hermitian manifold (M1xM2f,G) is the product manifold M1xM2 endowed with the Hermitian metric G=g+f2h, where f is a positive smooth function on M1xM2. In this paper, the Chern curvature, Chern Ricci curvature, Chern Ricci scalar curvature and holomorphic sectional curvature of the twisted product Hermitian manifold are derived. The necessary and sufficient conditions for the compact twisted product Hermitian manifold to have constant holomorphic sectional curvature are obtained. Under the condition that the logarithm of the twisted function is pluriharmonic, it is proved that the twisted product Hermitian manifold is Chern flat or Chern Ricci-flat, if and only if M1,g and M2,h are Chern flat or Chern Ricci-flat, respectively.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] SUPERCONFORMAL SYMMETRY AND GEOMETRY OF RICCI-FLAT KAHLER-MANIFOLDS
    OOGURI, H
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (17): : 4303 - 4324
  • [42] More Ricci-flat branes
    Figueroa-O'Farrill, JM
    PHYSICS LETTERS B, 1999, 471 (2-3) : 128 - 132
  • [43] Flat bands and high Chern numbers in twisted multilayer graphene
    Yang, Mengxuan
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (11)
  • [44] Some Ricci-flat (α, β)-metrics
    Sevim, Esra Sengelen
    Ulgen, Semail
    PERIODICA MATHEMATICA HUNGARICA, 2016, 72 (02) : 151 - 157
  • [45] A new Ricci-flat geometry
    Pal, SS
    PHYSICS LETTERS B, 2005, 614 (3-4) : 201 - 206
  • [46] COSMOLOGY WITH RICCI-FLAT COMPACTIFICATION
    YOSHIMURA, M
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1986, (86): : 208 - 214
  • [47] AdS/Ricci-flat correspondence
    Marco M. Caldarelli
    Joan Camps
    Blaise Goutéraux
    Kostas Skenderis
    Journal of High Energy Physics, 2014
  • [48] Warped Ricci-flat reductions
    Colgain, E. O.
    Sheikh-Jabbari, M. M.
    Vazquez-Poritz, J. F.
    Yavartanoo, H.
    Zhang, Z.
    PHYSICAL REVIEW D, 2014, 90 (04):
  • [49] AdS/Ricci-flat correspondence
    Caldarelli, Marco M.
    Camps, Joan
    Gouteraux, Blaise
    Skenderis, Kostas
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (04):
  • [50] LAGRANGIANS FOR RICCI-FLAT GEOMETRIES
    ESTABROOK, FB
    CLASSICAL AND QUANTUM GRAVITY, 1991, 8 (07) : L151 - L154