Chern Flat and Chern Ricci-Flat Twisted Product Hermitian Manifolds

被引:0
|
作者
Li, Shuwen [1 ]
He, Yong [1 ]
Lu, Weina [1 ]
Yang, Ruijia [1 ]
机构
[1] Xinjiang Normal Univ, Sch Math Sci, Urumqi 830017, Peoples R China
基金
中国国家自然科学基金;
关键词
Hermitian manifold; twisted product; holomorphic sectional curvature; Chern flat; Chern Ricci-flat;
D O I
10.3390/math12030449
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M1,g) and (M2,h) be two Hermitian manifolds. The twisted product Hermitian manifold (M1xM2f,G) is the product manifold M1xM2 endowed with the Hermitian metric G=g+f2h, where f is a positive smooth function on M1xM2. In this paper, the Chern curvature, Chern Ricci curvature, Chern Ricci scalar curvature and holomorphic sectional curvature of the twisted product Hermitian manifold are derived. The necessary and sufficient conditions for the compact twisted product Hermitian manifold to have constant holomorphic sectional curvature are obtained. Under the condition that the logarithm of the twisted function is pluriharmonic, it is proved that the twisted product Hermitian manifold is Chern flat or Chern Ricci-flat, if and only if M1,g and M2,h are Chern flat or Chern Ricci-flat, respectively.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] RICCI-FLAT FINSLER METRICS BY WARPED PRODUCT
    Marcal, P. A. T. R. I. C. I. A.
    Shen, Z. H. O. N. G. M. I. N.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 2169 - 2183
  • [22] DEGENERATIONS OF RICCI-FLAT CALABI-YAU MANIFOLDS
    Rong, Xiaochun
    Zhang, Yuguang
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (04)
  • [23] The nonuniqueness of the tangent cones at infinity of Ricci-flat manifolds
    Hattori, Kota
    GEOMETRY & TOPOLOGY, 2017, 21 (05) : 2683 - 2723
  • [24] Examples of asymptotically conical Ricci-flat Kahler manifolds
    van Coevering, Craig
    MATHEMATISCHE ZEITSCHRIFT, 2011, 267 (1-2) : 465 - 496
  • [25] HAUSDORFF PERTURBATIONS OF RICCI-FLAT MANIFOLDS AND THE SPLITTING THEOREM
    ANDERSON, MT
    DUKE MATHEMATICAL JOURNAL, 1992, 68 (01) : 67 - 82
  • [26] ON NONCOLLAPSED ALMOST RICCI-FLAT 4-MANIFOLDS
    Kapovitch, Vitali
    Lott, John
    AMERICAN JOURNAL OF MATHEMATICS, 2019, 141 (03) : 737 - 755
  • [27] A gap theorem for Ricci-flat 4-manifolds
    Bhattacharya, Atreyee
    Seshadri, Harish
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2015, 40 : 269 - 277
  • [28] Correction to: Stability of ALE Ricci-Flat Manifolds Under Ricci Flow
    Alix Deruelle
    Klaus Kröncke
    The Journal of Geometric Analysis, 2021, 31 : 12635 - 12636
  • [29] Ricci-flat branes
    Brecher, D
    Perry, MJ
    NUCLEAR PHYSICS B, 2000, 566 (1-2) : 151 - 172
  • [30] Blowing up Chern-Ricci flat balanced metrics
    Fusi, Elia
    Giusti, Federico
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2025, 197