Engineering brighter fluorescent proteins with DropSynth and machine learning methods

被引:0
|
作者
Benabbas, Anissa [1 ]
机构
[1] Univ Oregon, Inst Mol Biol, Eugene, OR USA
关键词
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
626
引用
收藏
页数:1
相关论文
共 50 条
  • [31] Comparing Methods for Multilabel Classification of Proteins Using Machine Learning Techniques
    Cerri, Ricardo
    da Silva, Renato R. O.
    de Carvalho, Andre C. P. L. F.
    ADVANCES IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, PROCEEDINGS, 2009, 5676 : 109 - 120
  • [32] Recent Advances in Machine Learning Methods for Predicting Heat Shock Proteins
    Chen, Wei
    Feng, Pengmian
    Liu, Tao
    Jin, Dianchuan
    CURRENT DRUG METABOLISM, 2019, 20 (03) : 224 - 228
  • [33] Machine learning methods to evaluate correlations and causalities in allosteric signaling in proteins
    Varma, Sameer
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [34] Advances in engineering of fluorescent proteins and photoactivatable proteins with red emission
    Piatkevich, Kiryl D.
    Verkhusha, Vladislav V.
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2010, 14 (01) : 23 - 29
  • [35] Analysis of the Improvement of Engineering Mechanics Experimental Methods Based on IoT and Machine Learning
    Sun, Yi
    Sheng, Dongfa
    Liu, Dewen
    SENSORS, 2023, 23 (07)
  • [36] Prediction of Poisson's ratio for a petroleum engineering application: Machine learning methods
    Alakbari, Fahd Saeed
    Mahmood, Syed Mohammad
    Ayoub, Mohammed Abdalla
    Khan, Muhammad Jawad
    Afolabi, Funsho
    Mohyaldinn, Mysara Eissa
    Muhsan, Ali Samer
    PLOS ONE, 2025, 20 (02):
  • [37] Prediction of disulfide connectivity in proteins with machine-learning methods and correlated mutations
    Savojardo, Castrense
    Fariselli, Piero
    Martelli, Pier Luigi
    Casadio, Rita
    BMC Bioinformatics, 2013, 14 (SUPPL.1):
  • [38] Prediction of disulfide connectivity in proteins with machine-learning methods and correlated mutations
    Castrense Savojardo
    Piero Fariselli
    Pier Luigi Martelli
    Rita Casadio
    BMC Bioinformatics, 14
  • [39] Prediction of the Bonding State of Cysteine Residues in Proteins with Machine-Learning Methods
    Savojardo, Castrense
    Fariselli, Piero
    Martelli, Pier Luigi
    Shukla, Priyank
    Casadio, Rita
    COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, 2011, 6685 : 98 - 111
  • [40] A Survey for Predicting ATP Binding Residues of Proteins Using Machine Learning Methods
    Yang, Yu-He
    Wang, Jia-Shu
    Yuan, Shi-Shi
    Liu, Meng-Lu
    Su, Wei
    Lin, Hao
    Zhang, Zhao-Yue
    CURRENT MEDICINAL CHEMISTRY, 2022, 29 (05) : 789 - 806