Prediction of disulfide connectivity in proteins with machine-learning methods and correlated mutations

被引:0
|
作者
Castrense Savojardo
Piero Fariselli
Pier Luigi Martelli
Rita Casadio
机构
[1] University of Bologna,Department of Computer Science and Engineering
[2] University of Bologna,Biocomputing Group
[3] CIRI-Life Science and Health Technologies/Department of Biology,undefined
来源
关键词
Mutual Information; Disulfide Bond; Support Vector Regression; Bonding State; Average Mutual Information;
D O I
暂无
中图分类号
学科分类号
摘要
引用
下载
收藏
相关论文
共 50 条
  • [1] Prediction of disulfide connectivity in proteins with machine-learning methods and correlated mutations
    Savojardo, Castrense
    Fariselli, Piero
    Martelli, Pier Luigi
    Casadio, Rita
    BMC BIOINFORMATICS, 2013, 14
  • [2] Prediction of disulfide connectivity in proteins with machine-learning methods and correlated mutations
    Savojardo, Castrense
    Fariselli, Piero
    Martelli, Pier Luigi
    Casadio, Rita
    BMC Bioinformatics, 2013, 14 (SUPPL.1):
  • [3] Predicting disulfide bond connectivity in proteins by correlated mutations analysis
    Rubinstein, Rotem
    Fiser, Andras
    BIOINFORMATICS, 2008, 24 (04) : 498 - 504
  • [4] Prediction of disulfide connectivity in proteins with support vector machine
    Hsuan-Liang Liu
    Shih-Chieh Chen
    JOURNAL OF THE CHINESE INSTITUTE OF CHEMICAL ENGINEERS, 2007, 38 (01): : 63 - 70
  • [5] Prediction of the Bonding State of Cysteine Residues in Proteins with Machine-Learning Methods
    Savojardo, Castrense
    Fariselli, Piero
    Martelli, Pier Luigi
    Shukla, Priyank
    Casadio, Rita
    COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, 2011, 6685 : 98 - 111
  • [6] Prediction of disulfide connectivity in proteins
    Fariselli, P
    Casadio, R
    BIOINFORMATICS, 2001, 17 (10) : 957 - 964
  • [7] Prediction of Hemolytic Toxicity for Saponins by Machine-Learning Methods
    Zheng, Suqing
    Wang, Yibing
    Liu, Hongmei
    Chang, Wenping
    Xu, Yong
    Lin, Fu
    CHEMICAL RESEARCH IN TOXICOLOGY, 2019, 32 (06) : 1014 - 1026
  • [8] Machine-learning methods for stream water temperature prediction
    Feigl, Moritz
    Lebiedzinski, Katharina
    Herrnegger, Mathew
    Schulz, Karsten
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2021, 25 (05) : 2951 - 2977
  • [9] Asymmetrical semi-supervised learning and prediction of disulfide connectivity in proteins
    Laboratoire d'Informatique Fondamentale , UMR CNRS 6166, Université de Provence
    Rev Intell Artif, 2006, 6 (673-695):
  • [10] Prediction of Settling Velocity of Microplastics by Multiple Machine-Learning Methods
    Leng, Zequan
    Cao, Lu
    Gao, Yun
    Hou, Yadong
    Wu, Di
    Huo, Zhongyan
    Zhao, Xizeng
    WATER, 2024, 16 (13)