Prediction of disulfide connectivity in proteins with machine-learning methods and correlated mutations

被引:0
|
作者
Castrense Savojardo
Piero Fariselli
Pier Luigi Martelli
Rita Casadio
机构
[1] University of Bologna,Department of Computer Science and Engineering
[2] University of Bologna,Biocomputing Group
[3] CIRI-Life Science and Health Technologies/Department of Biology,undefined
来源
关键词
Mutual Information; Disulfide Bond; Support Vector Regression; Bonding State; Average Mutual Information;
D O I
暂无
中图分类号
学科分类号
摘要
引用
下载
收藏
相关论文
共 50 条
  • [31] Machine-Learning Methods for Computational Science and Engineering
    Frank, Michael
    Drikakis, Dimitris
    Charissis, Vassilis
    COMPUTATION, 2020, 8 (01)
  • [32] How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach
    Ichikawa, Daisuke
    Saito, Toki
    Ujita, Waka
    Oyama, Hiroshi
    JOURNAL OF BIOMEDICAL INFORMATICS, 2016, 64 : 20 - 24
  • [33] Bidirectional connectivity alterations in schizophrenia: a multivariate, machine-learning approach
    Kim, Minhoe
    Seo, Ji Won
    Yun, Seokho
    Kim, Minchul
    FRONTIERS IN PSYCHIATRY, 2023, 14
  • [34] In Silico Prediction of CYP2C8 Inhibition with Machine-Learning Methods
    Zhang, Xiaoxiao
    Zhao, Piaopiao
    Wang, Zhiyuan
    Xu, Xuan
    Liu, Guixia
    Tang, Yun
    Li, Weihua
    CHEMICAL RESEARCH IN TOXICOLOGY, 2021, 34 (08) : 1850 - 1859
  • [35] Predictive Ability of Machine-Learning Methods for Vitamin D Deficiency Prediction by Anthropometric Parameters
    Patino-Alonso, Carmen
    Gomez-Sanchez, Marta
    Gomez-Sanchez, Leticia
    Sanchez Salgado, Benigna
    Rodriguez-Sanchez, Emiliano
    Garcia-Ortiz, Luis
    Gomez-Marcos, Manuel A.
    MATHEMATICS, 2022, 10 (04)
  • [36] Statistical and machine-learning methods for clearance time prediction of road incidents: A methodology review
    Tang, Jinjun
    Zheng, Lanlan
    Han, Chunyang
    Yin, Weiqi
    Zhang, Yue
    Zou, Yajie
    Huang, Helai
    ANALYTIC METHODS IN ACCIDENT RESEARCH, 2020, 27
  • [37] Machine-learning to characterise neonatal functional connectivity in the preterm brain
    Ball, G.
    Aljabar, P.
    Arichi, T.
    Tusor, N.
    Cox, D.
    Merchant, N.
    Nongena, P.
    Hajnal, J. V.
    Edwards, A. D.
    Counsell, S. J.
    NEUROIMAGE, 2016, 124 : 267 - 275
  • [38] e-Bitter: Bitterant Prediction by the Consensus Voting From the Machine-Learning Methods
    Zheng, Suqing
    Jiang, Mengying
    Zhao, Chengwei
    Zhu, Rui
    Hu, Zhicheng
    Xu, Yong
    Lin, Fu
    FRONTIERS IN CHEMISTRY, 2018, 6
  • [39] PEVs Idle Time Prediction at Public Charging Stations Using Machine-Learning Methods
    Almaghrebi, Ahmad
    Al Juheshi, Fares
    James, Kevin
    Aljuhaishi, Nasser
    Alahmad, Mahmoud
    2021 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE & EXPO (ITEC), 2021,
  • [40] Improving the prediction of disulfide bonds in Eukaryotes with machine learning methods and protein subcellular localization
    Savojardo, Castrense
    Fariselli, Piero
    Alhamdoosh, Monther
    Martelli, Pier Luigi
    Pierleoni, Andrea
    Casadio, Rita
    BIOINFORMATICS, 2011, 27 (16) : 2224 - 2230