Quantitative Korovkin theorems for monotone sublinear and strongly translatable operators in Lp([0,1]), 1 < P < ∞

被引:0
|
作者
Gal, Sorin g. [1 ,2 ]
Niculescu, Constantin p. [2 ,3 ]
机构
[1] Univ Oradea, Dept Math & Comp Sci, Oradea 410087, Romania
[2] Acad Romanian Scientists, Bucharest 050044, Romania
[3] Univ Craiova, Dept Math, Craiova 410087, Romania
关键词
Korovkin type theorems; monotone operator; sublinear operator; weakly nonlinear operator; C([0; 1])-space; Lp([0; 1 < p < oo; second order mod- ulus of smoothness; Lp-modulus of smoothness of orders 1 and 2; quantitative estimates; APPROXIMATION; CONVERGENCE;
D O I
10.4064/ap230511-18-12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By extending the classical quantitative approximation results for positive linear operators in Lp([0, 1]), 1 <= p <= infinity, of Berens and DeVore in 1978 and of Swetits and Wood in 1983 to the more general case of monotone sublinear and strongly translatable operators, we obtain quantitative estimates in terms of the second order and third order moduli of smoothness, in Korovkin type theorems. Applications to concrete examples are included and an open question concerning interpolation theory for sublinear, monotone and strongly translatable operators is raised.
引用
收藏
页码:137 / 151
页数:16
相关论文
共 50 条
  • [21] Hypersingular integral operators on modulation spaces for 0 &lt; p &lt; 1
    Cheng, Meifang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [22] Adaptive Lp (0 &lt; p &lt; 1) Regularization: Oracle Property and Applications
    Shi, Yunxiao
    He, Xiangnan
    Wu, Han
    Jin, Zhong-Xiao
    Lu, Wenlian
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 : 13 - 23
  • [23] Quasi-greedy bases in lp(0 &lt; p &lt; 1) are democratic
    Albiac, Fernando
    Ansorena, Jose L.
    Wojtaszczyk, Przemyslaw
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (07)
  • [24] On moduli of smoothness and Fourier multipliers in Lp , 0 &lt; p&lt; 1
    Kolomoitsev Yu.S.
    Ukrainian Mathematical Journal, 2007, 59 (9) : 1364 - 1384
  • [25] Haar approximation from within for Lp(Rd), 0 &lt; p &lt; 1
    Benedetto, John J.
    Njeunje, Franck Olivier Ndjakou
    SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2021, 19 (01):
  • [26] Lp(0&lt;p&lt;1)中的逼近
    黄穗
    谢莉
    何艳
    西华师范大学学报(自然科学版), 2009, 30 (02) : 195 - 198
  • [27] On the Lp dual Minkowski problem for-1&lt;p&lt;0
    Mui, Stephanie
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (08)
  • [28] A monotone scheme for sparsity optimization in lp with p ∈ (0,1]
    Ghilli, Daria
    Kunisch, Karl
    IFAC PAPERSONLINE, 2017, 50 (01): : 494 - 499
  • [29] The Lp dual Minkowski problem about 0 &lt; p &lt; 1 and q &gt; 0
    Lu, Fangxia
    Pu, Zhaonian
    OPEN MATHEMATICS, 2021, 19 (01): : 1648 - 1663
  • [30] ON DENSENESS OF C0∞(Ω) AND COMPACTNESS IN Lp(x)(Ω) FOR 0 &lt; p(x) &lt; 1
    Bandaliev, R. A.
    Hasanov, S. G.
    MOSCOW MATHEMATICAL JOURNAL, 2018, 18 (01) : 1 - 13