Random regression models to estimate genetic parameters for milk yield, fat, and protein contents in Tunisian Holsteins

被引:2
|
作者
Soumri, N. [1 ]
Carabano, Maria J. [2 ]
Gonzalez-Recio, O. [2 ]
Bedhiaf-Romdhani, S. [1 ]
机构
[1] Natl Inst Agron Res Tunisia INRAT, Anim & Fodder Prod Lab, Tunis 1004, Tunisia
[2] Natl Inst Agr & Food Res & Technol INIA, Anim Breeding & Genet Dept, Madrid 28040, Spain
关键词
genetic parameters; Holstein; model comparison; persistency; random regression; SOMATIC-CELL SCORE; TEST-DAY RECORDS; LEGENDRE POLYNOMIALS; BREEDING VALUES; DAIRY-CATTLE; 1ST; COWS; SELECTION; TRAITS; PERSISTENCY;
D O I
10.1111/jbg.12770
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
This study aimed to find the parsimonious random regression model (RRM) to evaluate the genetic potential for milk yield (MY), fat content (FC), and protein content (PC) in Tunisian Holstein cows. For this purpose, 551,139; 331,654; and 302,396 test day records for MY, FC, and PC were analysed using various RRMs with different Legendre polynomials (LP) orders on additive genetic (AG) and permanent environmental (PE) effects, and different types of residual variances (RV). The statistical analysis was performed in a Bayesian framework with Gibbs sampling, and the model performances were assessed, mainly, on the predictive ability criteria. The study found that the optimal model for evaluating these traits was an RRM with a third LP order and nine classes of heterogeneous RV. In addition, the study found that heritability estimates for MY, FC, and PC ranged from 0.11 to 0.22, 0.11 to 0.17, and 0.12 to 0.18, respectively, indicating that genetic improvement should be accompanied by improvements in the production environment. The study also suggested that new selection rules could be used to modify lactation curves by exploiting the canonical transformation of the random coefficient covariance (RC) matrix or by using the combination of slopes of individual lactation curves and expected daily breeding values.
引用
收藏
页码:440 / 461
页数:22
相关论文
共 50 条
  • [41] Genetic Parameters for Test-Day Fat Yield Estimated by Random Regression Models in Dairy Buffaloes using Bayesian Inference
    Brito, Lais Costa
    Aspilcueta Borquis, Rusbel Raul
    Tonhati, Humberto
    Torres, Robledo de Almeida
    [J]. BUFFALO BULLETIN, 2013, 32 : 774 - 774
  • [42] Modelling of individual lactation curves of Tunisian Holstein-Friesian cows for milk yield, fat, and protein contents using parametric, orthogonal and spline models
    Bouallegue, M.
    Steri, R.
    M'hamdi, N.
    Ben Hamouda, M.
    [J]. JOURNAL OF ANIMAL AND FEED SCIENCES, 2015, 24 (01): : 11 - 18
  • [43] Repeatability and random regression models to estimate genetic parameters for oocyte and embryo production in the Gir breed
    Bretanha Rocha, Renata de Fatima
    Otto, Pamela Itajara
    Gualberto Barbosa da Silva, Marcos Vinicius
    Martins, Marta Fonseca
    Machado, Marco Antonio
    Veroneze, Renata
    Leandro, Felipe Damasceno
    Pereira, Stela Naetzold
    Facioni Guimaraes, Simone Eliza
    do Carmo Panetto, Joao Claudio
    [J]. ANIMAL PRODUCTION SCIENCE, 2022, 62 (17) : 1661 - 1670
  • [44] GENETIC-PARAMETERS OF CONFORMATION TRAITS, MILK-YIELD, AND HERD LIFE IN HOLSTEINS
    SHORT, TH
    LAWLOR, TJ
    [J]. JOURNAL OF DAIRY SCIENCE, 1992, 75 (07) : 1987 - 1998
  • [45] Buffalos milk yield analysis using random regression models
    de Araujo, C. V.
    Ramos, A. Amorim
    Araujo, S. Inoe
    Chaves, L. Celi
    Schierholt, A. S.
    [J]. ITALIAN JOURNAL OF ANIMAL SCIENCE, 2007, 6 : 279 - 282
  • [46] Random regression models in the milk yield evaluation in Saanen goats
    de Oliveira Menezes, Gilberto Romeiro
    Torres, Robledo de Almeida
    Rocha Sarmento, Jose Lindenberg
    Rodrigues, Marcelo Teixeira
    Brito, Luiz Fernando
    Lopes, Paulo Savio
    da Silva, Felipe Gomes
    [J]. REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2011, 40 (07): : 1526 - 1532
  • [47] Genetic analysis of milk yield, fat and protein content in Holstein dairy cows in Iran: Legendre polynomials random regression model applied
    Abdullahpour, Rohullah
    Shahrbabak, Mohammad Moradi
    Nejati-Javaremi, Ardeshir
    Torshizi, Rasoul Vaez
    Mrode, Raphael
    [J]. ARCHIV FUR TIERZUCHT-ARCHIVES OF ANIMAL BREEDING, 2013, 56
  • [48] Combining different functions to describe milk, fat, and protein yield in goats using Bayesian multiple-trait random regression models
    Oliveira, H. R.
    Silva, F. F.
    Siqueira, O. H. G. B. D.
    Souza, N. O.
    Junqueira, V. S.
    Resende, M. D. V.
    Borquis, R. R. A.
    Rodrigues, M. T.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2016, 94 (05) : 1865 - 1874
  • [49] ESTIMATION OF GENETIC PARAMETERS OF FIRST LACTATION TEST-DAY MILK YIELD USING RANDOM REGRESSION MODELS IN IRANIAN HOLSTEIN COWS
    Behzadi, M. R. B.
    Mehrpoor, Z.
    [J]. JOURNAL OF ANIMAL AND PLANT SCIENCES, 2018, 28 (01): : 24 - 32
  • [50] Genetic parameters for milk yield and persistency in Carora dairy cattle breed using random regression model
    Tullo, Emanuela
    Biffani, Stefano
    Maltecca, Christian
    Rizzi, Rita
    [J]. ITALIAN JOURNAL OF ANIMAL SCIENCE, 2014, 13 (04) : 825 - 829