Combining different functions to describe milk, fat, and protein yield in goats using Bayesian multiple-trait random regression models

被引:19
|
作者
Oliveira, H. R. [1 ]
Silva, F. F. [1 ]
Siqueira, O. H. G. B. D. [1 ]
Souza, N. O. [1 ]
Junqueira, V. S. [1 ]
Resende, M. D. V. [2 ]
Borquis, R. R. A. [3 ]
Rodrigues, M. T. [1 ]
机构
[1] Univ Fed Vicosa, Dept Anim Sci, BR-36570000 Vicosa, MG, Brazil
[2] Embrapa Ctr Nacl Pesquisa Florestas, BR-83411000 Colombo, PR, Brazil
[3] Univ Estadual Sao Paulo, Dept Anim Sci, BR-14884900 Jaboticabal, SP, Brazil
关键词
Ali and Schaeffer function; B-splines; deviance information criterion; Legendre polynomials; posterior model probabilities; Wilmink function; INDIVIDUAL LACTATION CURVES; GENETIC-PARAMETERS; R-PACKAGE; POPULATION; COWS;
D O I
10.2527/jas.2015-0150
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
We proposed multiple-trait random regression models (MTRRM) combining different functions to describe milk yield (MY) and fat (FP) and protein (PP) percentage in dairy goat genetic evaluation by using Bayesian inference. A total of 3,856 MY, FP, and PP test-day records, measured between 2000 and 2014, from 535 first lactations of Saanen and Alpine goats, including their cross, were used in this study. The initial analyses were performed using the following single-trait random regression models (STRRM): third-and fifth-order Legendre polynomials (Leg3 and Leg5), linear B-splines with 3 and 5 knots, the Ali and Schaeffer function (Ali), and Wilmink function. Heterogeneity of residual variances was modeled considering 3 classes. After the selection of the best STRRM to describe each trait on the basis of the deviance information criterion (DIC) and posterior model probabilities (PMP), the functions were combined to compose the MTRRM. All combined MTRRM presented lower DIC values and higher PMP, showing the superiority of these models when compared to other MTRRM based only on the same function assumed for all traits. Among the combined MTRRM, those considering Ali to describe MY and PP and Leg5 to describe FP (Ali_Leg5_Ali model) presented the best fit. From the Ali_Leg5_Ali model, heritability estimates over time for MY, FP. and PP ranged from 0.25 to 0.54, 0.27 to 0.48, and 0.35 to 0.51, respectively. Genetic correlation between MY and FP, MY and PP, and FP and PP ranged from -0.58 to 0.03, -0.46 to 0.12, and 0.37 to 0.64, respectively. We concluded that combining different functions under a MTRRM approach can be a plausible alternative for joint genetic evaluation of milk yield and milk constituents in goats.
引用
收藏
页码:1865 / 1874
页数:10
相关论文
共 50 条
  • [1] Multiple-trait random regression models for the estimation of genetic parameters for milk, fat, and protein yield in buffaloes
    Aspilcueta Borquis, Rusbel Raul
    de Araujo Neto, Francisco Ribeiro
    Baldi, Fernando
    Hurtado-Lugo, Naudin
    de Camargo, Gregorio M. F.
    Munoz-Berrocal, Milthon
    Tonhati, Humberto
    [J]. JOURNAL OF DAIRY SCIENCE, 2013, 96 (09) : 5923 - 5932
  • [2] Random regression models in the milk yield evaluation in Saanen goats
    de Oliveira Menezes, Gilberto Romeiro
    Torres, Robledo de Almeida
    Rocha Sarmento, Jose Lindenberg
    Rodrigues, Marcelo Teixeira
    Brito, Luiz Fernando
    Lopes, Paulo Savio
    da Silva, Felipe Gomes
    [J]. REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2011, 40 (07): : 1526 - 1532
  • [3] Analyses of growth curves of Nellore cattle by multiple-trait and random regression models
    Nobre, PRC
    Misztal, I
    Tsuruta, S
    Bertrand, JK
    Silva, LOC
    Lopes, PS
    [J]. JOURNAL OF ANIMAL SCIENCE, 2003, 81 (04) : 918 - 926
  • [4] Genetic evaluation of growth in Nellore cattle by multiple-trait and random regression models
    Nobre, PRC
    Misztal, I
    Tsuruta, S
    Bertrand, JK
    Silva, LOC
    Lopes, PS
    [J]. JOURNAL OF ANIMAL SCIENCE, 2003, 81 (04) : 927 - 932
  • [5] Genetic evaluation using random regression models with different covariance functions for test-day milk yield in an admixture population of Thailand goats
    Thepparat, Mongkol
    Boonkum, Wuttigrai
    Duangjinda, Monchai
    Tumwasorn, Sornthep
    Nakavisut, Sansak
    Thongchumroon, Thumrong
    [J]. ANIMAL SCIENCE JOURNAL, 2015, 86 (07) : 655 - 660
  • [6] Genomic Prediction from Multiple-Trait Bayesian Regression Methods Using Mixture Priors
    Cheng, Hao
    Kizilkaya, Kadir
    Zeng, Jian
    Garrick, Dorian
    Fernando, Rohan
    [J]. GENETICS, 2018, 209 (01) : 89 - 103
  • [7] Alternative parameterizations of the multiple-trait random regression model for milk yield and somatic cell score via recursive links between phenotypes
    Jamrozik, J.
    Schaeffer, L. R.
    [J]. JOURNAL OF ANIMAL BREEDING AND GENETICS, 2011, 128 (04) : 258 - 266
  • [8] Modeling lactation curves and estimation of genetic parameters in Holstein cows using multiple-trait random regression models
    Kheirabadi, Khabat
    Rashidi, Amir
    Alijani, Sadegh
    Imumorin, Ikhide
    [J]. ANIMAL SCIENCE JOURNAL, 2014, 85 (11) : 925 - 934
  • [9] Random regression models for milk, fat and protein in Colombian Buffaloes
    Hurtado-Lugo, Naudin
    Tonhati, Humberto
    Aspilcuelta-Borquis, Raul
    Enriquez-Valencia, Cruz
    Ceron-Munoz, Mario
    [J]. REVISTA MVZ CORDOBA, 2015, 20 (01) : 4415 - 4426
  • [10] Genetic evaluation of milk yield in Alpine goats for the first four lactations using random regression models
    Silva, F. G.
    Torres, R. A.
    Silva, L. P.
    Ventura, H. T.
    Silva, F. F.
    Carneiro, A. P. S.
    Nascimento, M.
    Rodrigues, M. T.
    [J]. GENETICS AND MOLECULAR RESEARCH, 2014, 13 (04) : 10943 - 10951