Combining different functions to describe milk, fat, and protein yield in goats using Bayesian multiple-trait random regression models

被引:19
|
作者
Oliveira, H. R. [1 ]
Silva, F. F. [1 ]
Siqueira, O. H. G. B. D. [1 ]
Souza, N. O. [1 ]
Junqueira, V. S. [1 ]
Resende, M. D. V. [2 ]
Borquis, R. R. A. [3 ]
Rodrigues, M. T. [1 ]
机构
[1] Univ Fed Vicosa, Dept Anim Sci, BR-36570000 Vicosa, MG, Brazil
[2] Embrapa Ctr Nacl Pesquisa Florestas, BR-83411000 Colombo, PR, Brazil
[3] Univ Estadual Sao Paulo, Dept Anim Sci, BR-14884900 Jaboticabal, SP, Brazil
关键词
Ali and Schaeffer function; B-splines; deviance information criterion; Legendre polynomials; posterior model probabilities; Wilmink function; INDIVIDUAL LACTATION CURVES; GENETIC-PARAMETERS; R-PACKAGE; POPULATION; COWS;
D O I
10.2527/jas.2015-0150
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
We proposed multiple-trait random regression models (MTRRM) combining different functions to describe milk yield (MY) and fat (FP) and protein (PP) percentage in dairy goat genetic evaluation by using Bayesian inference. A total of 3,856 MY, FP, and PP test-day records, measured between 2000 and 2014, from 535 first lactations of Saanen and Alpine goats, including their cross, were used in this study. The initial analyses were performed using the following single-trait random regression models (STRRM): third-and fifth-order Legendre polynomials (Leg3 and Leg5), linear B-splines with 3 and 5 knots, the Ali and Schaeffer function (Ali), and Wilmink function. Heterogeneity of residual variances was modeled considering 3 classes. After the selection of the best STRRM to describe each trait on the basis of the deviance information criterion (DIC) and posterior model probabilities (PMP), the functions were combined to compose the MTRRM. All combined MTRRM presented lower DIC values and higher PMP, showing the superiority of these models when compared to other MTRRM based only on the same function assumed for all traits. Among the combined MTRRM, those considering Ali to describe MY and PP and Leg5 to describe FP (Ali_Leg5_Ali model) presented the best fit. From the Ali_Leg5_Ali model, heritability estimates over time for MY, FP. and PP ranged from 0.25 to 0.54, 0.27 to 0.48, and 0.35 to 0.51, respectively. Genetic correlation between MY and FP, MY and PP, and FP and PP ranged from -0.58 to 0.03, -0.46 to 0.12, and 0.37 to 0.64, respectively. We concluded that combining different functions under a MTRRM approach can be a plausible alternative for joint genetic evaluation of milk yield and milk constituents in goats.
引用
收藏
页码:1865 / 1874
页数:10
相关论文
共 50 条
  • [41] Genetic Parameters for Milk Yield and Lactation Persistency Using Random Regression Models in Girolando Cattle
    Canaza-Cayo, Ali William
    Lopes, Paulo Savio
    Gualberto Barbosa da Silva, Marcos Vinicius
    Torres, Robledo de Almeida
    Martins, Marta Fonseca
    Arbex, Wagner Antonio
    Cobuci, Jaime Araujo
    [J]. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, 2015, 28 (10): : 1407 - 1418
  • [42] Parametric correlation functions to model the structure of permanent environmental (co)variances in milk yield random regression models
    Bignardi, A. B.
    El Faro, L.
    Cardoso, V. L.
    Machado, P. F.
    Albuquerque, L. G.
    [J]. JOURNAL OF DAIRY SCIENCE, 2009, 92 (09) : 4634 - 4640
  • [43] Bayesian analysis of random regression models using B-splines to model test-day milk yield of Holstein cattle in Brazil
    Bignardi, A. B.
    El Faro, L.
    Santana, M. L., Jr.
    Rosa, G. J. M.
    Cardoso, V. L.
    Machado, P. F.
    Albuquerque, L. G.
    [J]. LIVESTOCK SCIENCE, 2012, 150 (1-3) : 401 - 406
  • [44] Predicting breeding values for milk yield of Guzera (Bos indicus) cows using random regression models
    Santos, D. J. A.
    Peixoto, M. G. C. D.
    Aspilcueta Borquis, R. R.
    Panetto, J. C. C.
    El Faro, L.
    Tonhati, H.
    [J]. LIVESTOCK SCIENCE, 2014, 167 : 41 - 50
  • [45] Variance and covariance components and genetic parameters for fat and protein yield of first-lactation Holstein cows using random regression models
    Munera Bedoya, Oscar D.
    Herrera Rios, Ana C.
    Gonzalez Herrera, Luis G.
    Henao Velasquez, Andres F.
    Ceron Munoz, Mario
    [J]. REVISTA COLOMBIANA DE CIENCIAS PECUARIAS, 2014, 27 (04) : 253 - 263
  • [46] Genomic-polygenic and polygenic evaluations for milk yield and fat percentage using random regression models with Legendre polynomials in a Thai multibreed dairy population
    Jattawa, Danai
    Elzo, Mauricio A.
    Koonawootrittriron, Skorn
    Suwanasopee, Thanathip
    [J]. LIVESTOCK SCIENCE, 2016, 188 : 133 - 141
  • [47] GENETIC EVALUATION OF LACTATION PERSISTENCY AND MILK YIELD IN IRANIAN HOLSTEIN DAIRY CATTLE USING RANDOM REGRESSION MODELS
    Bankizadeh, F.
    Kashan, N. Emam-Jomee
    Eghbalsaied, S.
    Safari, R.
    [J]. JOURNAL OF ANIMAL AND PLANT SCIENCES, 2015, 25 (06): : 1527 - 1531
  • [48] GENETIC AND PHENOTYPIC CORRELATION BETWEEN SOMATIC CELL COUNT AND MILK YIELD IN SAUDI DAIRY GOATS USING RANDOM REGRESSION ANIMAL MODEL
    Amin, A. A.
    [J]. JOURNAL OF ANIMAL AND PLANT SCIENCES-JAPS, 2017, 27 (05): : 1432 - 1439
  • [49] Genetic parameter estimation for milk yield over multiple parities and various lengths of lactation in Danish jerseys by random regression models
    Guo, Z
    Lund, MS
    Madsen, P
    Korsgaard, I
    Jensen, J
    [J]. JOURNAL OF DAIRY SCIENCE, 2002, 85 (06) : 1596 - 1606
  • [50] Application of random regression models for genetic analysis of 305-d milk yield over different lactations of Iranian Holsteins
    Torshizi, Mahdi Elahi
    Farhangfar, Homayoun
    Mashhadi, Mojtaba Hosseinpour
    [J]. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, 2017, 30 (10): : 1382 - 1387