MSRMNet: Multi-scale skip residual and multi-mixed features network for salient object detection

被引:1
|
作者
Liu, Xinlong [1 ]
Wang, Luping [1 ]
机构
[1] Sun Yat Sen Univ, Guangzhou 510275, Peoples R China
关键词
Salient object detection; Deep learning; Neural networks; Features fusion; CONNECTIONS;
D O I
10.1016/j.neunet.2024.106144
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The current models for the salient object detection (SOD) have made remarkable progress through multi -scale feature fusion strategies. However, the existing models have large deviations in the detection of different scales, and the target boundaries of the prediction images are still blurred. In this paper, we propose a new model addressing these issues using a transformer backbone to capture multiple feature layers. The model uses multi -scale skip residual connections during encoding to improve the accuracy of the model's predicted object position and edge pixel information. Furthermore, to extract richer multi -scale semantic information, we perform multiple mixed feature operations in the decoding stage. In addition, we add the structure similarity index measure (SSIM) function with coefficients in the loss function to enhance the accurate prediction performance of the boundaries. Experiments demonstrate that our algorithm achieves state-of-the-art results on five public datasets, and improves the performance metrics of the existing SOD tasks. Codes and results are available at: https://github.com/xxwudi508/MSRMNet.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Multi-scale Interactive Network for Salient Object Detection
    Pang, Youwei
    Zhao, Xiaoqi
    Zhang, Lihe
    Lu, Huchuan
    [J]. arXiv, 2020,
  • [2] Multi-Scale Cascade Network for Salient Object Detection
    Li, Xin
    Yang, Fan
    Cheng, Hong
    Chen, Junyu
    Guo, Yuxiao
    Chen, Leiting
    [J]. PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 439 - 447
  • [3] Multi-scale deep neural network for salient object detection
    Xiao, Fen
    Deng, Wenzheng
    Peng, Liangchan
    Cao, Chunhong
    Hu, Kai
    Gao, Xieping
    [J]. IET IMAGE PROCESSING, 2018, 12 (11) : 2036 - 2041
  • [4] Multi-scale Pyramid Pooling Network for salient object detection
    Dakhia, Abdelhafid
    Wang, Tiantian
    Lu, Huchuan
    [J]. NEUROCOMPUTING, 2019, 333 : 211 - 220
  • [5] Multiplexing Multi-Scale Features Network for Salient Target Detection
    Liu, Xiaoxuan
    Peng, Yanfei
    Wang, Gang
    Wang, Jing
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [6] StairsNet: Mixed Multi-scale Network for Object Detection
    Gao, Weiyi
    Cao, Wenlong
    Zhai, Jian
    Rui, Jianwu
    [J]. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT I, 2018, 10735 : 303 - 314
  • [7] DMINet: dense multi-scale inference network for salient object detection
    Chenxing Xia
    Yanguang Sun
    Xiuju Gao
    Bin Ge
    Songsong Duan
    [J]. The Visual Computer, 2022, 38 : 3059 - 3072
  • [8] Salient Object Detection with Chained Multi-Scale Fully Convolutional Network
    Tang, Youbao
    Wu, Xiangqian
    [J]. PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 618 - 626
  • [9] Multi-scale salient object detection network combining an attention mechanism
    Liu, Di
    Guo, Jichang
    Wang, Yudong
    Zhang, Yi
    [J]. Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2022, 49 (04): : 118 - 126
  • [10] Multi-level and multi-scale deep saliency network for salient object detection
    Zhang, Qing
    Lin, Jiajun
    Zhuge, Jingling
    Yuan, Wenhao
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 59 : 415 - 424