MSRMNet: Multi-scale skip residual and multi-mixed features network for salient object detection

被引:1
|
作者
Liu, Xinlong [1 ]
Wang, Luping [1 ]
机构
[1] Sun Yat Sen Univ, Guangzhou 510275, Peoples R China
关键词
Salient object detection; Deep learning; Neural networks; Features fusion; CONNECTIONS;
D O I
10.1016/j.neunet.2024.106144
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The current models for the salient object detection (SOD) have made remarkable progress through multi -scale feature fusion strategies. However, the existing models have large deviations in the detection of different scales, and the target boundaries of the prediction images are still blurred. In this paper, we propose a new model addressing these issues using a transformer backbone to capture multiple feature layers. The model uses multi -scale skip residual connections during encoding to improve the accuracy of the model's predicted object position and edge pixel information. Furthermore, to extract richer multi -scale semantic information, we perform multiple mixed feature operations in the decoding stage. In addition, we add the structure similarity index measure (SSIM) function with coefficients in the loss function to enhance the accurate prediction performance of the boundaries. Experiments demonstrate that our algorithm achieves state-of-the-art results on five public datasets, and improves the performance metrics of the existing SOD tasks. Codes and results are available at: https://github.com/xxwudi508/MSRMNet.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Salient object detection via multi-scale attention CNN
    Ji, Yuzhu
    Zhang, Haijun
    Wu, Q. M. Jonathan
    [J]. NEUROCOMPUTING, 2018, 322 : 130 - 140
  • [32] Salient object detection based on multi-scale region contrast
    Cheng Pei-rui
    Wang Jian-li
    Wang Bin
    Li Zheng-wei
    Wu Yuan-hao
    [J]. CHINESE OPTICS, 2016, 9 (01): : 97 - 105
  • [33] Multi-Scale Global Contrast CNN for Salient Object Detection
    Feng, Weijia
    Li, Xiaohui
    Gao, Guangshuai
    Chen, Xingyue
    Liu, Qingjie
    [J]. SENSORS, 2020, 20 (09)
  • [34] Multi-Scale Salient Object Detection with Pyramid Spatial Pooling
    Zhang, Jing
    Dai, Yuchao
    Porikli, Fatih
    He, Mingyi
    [J]. 2017 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC 2017), 2017, : 1245 - 1250
  • [35] Progressive multi-scale fusion network for RGB-D salient object detection
    Ren, Guangyu
    Xie, Yanchun
    Dai, Tianhong
    Stathaki, Tania
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 223
  • [36] Auto-MSFNet: Search Multi-scale Fusion Network for Salient Object Detection
    Zhang, Miao
    Liu, Tingwei
    Piao, Yongri
    Yao, Shunyu
    Lu, Huchuan
    [J]. PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 667 - 676
  • [37] Multi-scale iterative refinement network for RGB-D salient object detection
    Liu, Ze-Yu
    Liu, Jian-Wei
    Zuo, Xin
    Hu, Ming-Fei
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 106
  • [38] MMNet: Multi-Stage and Multi-Scale Fusion Network for RGB-D Salient Object Detection
    Liao, Guibiao
    Gao, Wei
    Jiang, Qiuping
    Wang, Ronggang
    Li, Ge
    [J]. MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 2436 - 2444
  • [39] MULTI-SCALE SHARED FEATURES FOR CASCADE OBJECT DETECTION
    Lin, Zhe
    Hua, Gang
    Davis, Larry S.
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 1865 - 1868
  • [40] Salient object detection based on global multi-scale superpixel contrast
    Yang, Jinfu
    Wang, Ying
    Wang, Guanghui
    Li, Mingai
    [J]. IET COMPUTER VISION, 2017, 11 (08) : 710 - 716