Multiplexing Multi-Scale Features Network for Salient Target Detection

被引:0
|
作者
Liu, Xiaoxuan [1 ]
Peng, Yanfei [1 ]
Wang, Gang [2 ]
Wang, Jing [1 ]
机构
[1] Liaoning Tech Univ, Sch Elect Informat Engn, Huludao 125105, Peoples R China
[2] Bohai shipbuilding Vocat Coll, Sch Elect & Elect Engn, Huludao 125105, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 17期
基金
中国国家自然科学基金;
关键词
salient object detection; multiplexing multi-scale features network; multi-scale aggregation; multi-scale visual interaction; CNN; OBJECT DETECTION;
D O I
10.3390/app14177940
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper proposes a multiplexing multi-scale features network (MMF-Network) for salient target detection to tackle the issue of incomplete detection structures when identifying salient targets across different scales. The network, based on encoder-decoder architecture, integrates a multi-scale aggregation module and a multi-scale visual interaction module. Initially, a multi-scale aggregation module is constructed, which, despite potentially introducing a small amount of noise, significantly enhances the high-level semantic and geometric information of features. Subsequently, SimAM is employed to emphasize feature information, thereby highlighting the significant target. A multi-scale visual interaction module is designed to enable compatibility between low-resolution and high-resolution feature maps, with dilated convolutions utilized to expand the receptive field of high-resolution feature maps. Finally, the proposed MMF-Network is tested on three datasets: DUTS-Te, HUK-IS, and PSCAL-S, achieving scores of 0.887, 0.811, and 0.031 in terms of its F-value SSIM and MA, respectively. The experimental results demonstrate that the MMF-Network exhibits a superior performance in salient target detection.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Multi-scale Interactive Network for Salient Object Detection
    Pang, Youwei
    Zhao, Xiaoqi
    Zhang, Lihe
    Lu, Huchuan
    [J]. arXiv, 2020,
  • [2] Multi-Scale Cascade Network for Salient Object Detection
    Li, Xin
    Yang, Fan
    Cheng, Hong
    Chen, Junyu
    Guo, Yuxiao
    Chen, Leiting
    [J]. PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 439 - 447
  • [3] MSRMNet: Multi-scale skip residual and multi-mixed features network for salient object detection
    Liu, Xinlong
    Wang, Luping
    [J]. NEURAL NETWORKS, 2024, 173
  • [4] Multi-scale deep neural network for salient object detection
    Xiao, Fen
    Deng, Wenzheng
    Peng, Liangchan
    Cao, Chunhong
    Hu, Kai
    Gao, Xieping
    [J]. IET IMAGE PROCESSING, 2018, 12 (11) : 2036 - 2041
  • [5] Multi-scale Pyramid Pooling Network for salient object detection
    Dakhia, Abdelhafid
    Wang, Tiantian
    Lu, Huchuan
    [J]. NEUROCOMPUTING, 2019, 333 : 211 - 220
  • [6] Global context-aware multi-scale features aggregative network for salient object detection
    Ullah, Inam
    Jian, Muwei
    Hussain, Sumaira
    Lian, Li
    Ali, Zafar
    Qureshi, Imran
    Guo, Jie
    Yin, Yilong
    [J]. NEUROCOMPUTING, 2021, 455 : 139 - 153
  • [7] DMINet: dense multi-scale inference network for salient object detection
    Chenxing Xia
    Yanguang Sun
    Xiuju Gao
    Bin Ge
    Songsong Duan
    [J]. The Visual Computer, 2022, 38 : 3059 - 3072
  • [8] Salient Object Detection with Chained Multi-Scale Fully Convolutional Network
    Tang, Youbao
    Wu, Xiangqian
    [J]. PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 618 - 626
  • [9] Multi-scale salient object detection network combining an attention mechanism
    Liu, Di
    Guo, Jichang
    Wang, Yudong
    Zhang, Yi
    [J]. Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2022, 49 (04): : 118 - 126
  • [10] DMINet: dense multi-scale inference network for salient object detection
    Xia, Chenxing
    Sun, Yanguang
    Gao, Xiuju
    Ge, Bin
    Duan, Songsong
    [J]. VISUAL COMPUTER, 2022, 38 (9-10): : 3059 - 3072