Fractional Laplacian;
eigenvalue problem;
constrained variational problem;
energy estimates;
CONCENTRATION-COMPACTNESS PRINCIPLE;
MASS CONCENTRATION;
GROUND-STATES;
UNIQUENESS;
CALCULUS;
D O I:
10.1007/s10114-023-1074-5
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We are interested in the existence and asymptotic behavior for the least energy solutions of the following fractional eigenvalue problem (P) (-.)su + V (x)u = mu u + am(x)|u| 4s N u, RN |u|2 dx = 1, u. H s (RN), where s. (0, 1), mu. R, a > 0, V (x) and m(x) are L8 (RN) functions with N = 2. We prove that there is a threshold a* s > 0 such that problem (P) has a least energy solution ua(x) for each a. (0, a* s) and ua blows up, as a a* s, at some point x0. RN, which makes V (x0) be the minimum and m(x0) be the maximum. Moreover, the precise blowup rates for ua are obtained under suitable conditions on V (x) and m(
机构:
Hunan First Normal Univ, Sch Math & Stat, Changsha 410205, Hunan, Peoples R ChinaHunan First Normal Univ, Sch Math & Stat, Changsha 410205, Hunan, Peoples R China
Tang, Wei
Wang, Zhi-Yong
论文数: 0引用数: 0
h-index: 0
机构:
Hunan First Normal Univ, Sch Math & Stat, Changsha 410205, Hunan, Peoples R ChinaHunan First Normal Univ, Sch Math & Stat, Changsha 410205, Hunan, Peoples R China
机构:
Univ Victoria, Dept Math & Stat, Victoria, BC, Canada
China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
Azerbaijan Univ, Dept Math & Informat, Baku, AzerbaijanUniv Victoria, Dept Math & Stat, Victoria, BC, Canada
Srivastava, Hari M.
Shah, Firdous A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kashmir, Dept Math, South Campus, Anantnag 192101, IndiaUniv Victoria, Dept Math & Stat, Victoria, BC, Canada
Shah, Firdous A.
Lone, Waseem Z.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kashmir, Dept Math, South Campus, Anantnag 192101, IndiaUniv Victoria, Dept Math & Stat, Victoria, BC, Canada