Sharp estimates for conditionally centered moments and for compact operators on Lp$L∧p$ spaces

被引:1
|
作者
Shargorodsky, Eugene [1 ,2 ]
Sharia, Teo [3 ,4 ]
机构
[1] Kings Coll London, Dept Math, London, England
[2] Tech Univ Dresden, Fak Math, Dresden, Germany
[3] Royal Holloway Univ London, Dept Math, Egham, Surrey, England
[4] Royal Holloway Univ London, Dept Math, Egham TW20 0EX, Surrey, England
关键词
bounded compact approximation property; conditionally centred moments; sharp estimates; CONTRACTIVE PROJECTIONS; NORMS; HYPERPLANES;
D O I
10.1002/mana.202100217
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (omega,F,P)$(\Omega , \mathcal {F}, \mathbf {P})$ be a probability space, xi be a random variable on (omega,F,P)$(\Omega , \mathcal {F}, \mathbf {P})$, G$\mathcal {G}$ be a sub-sigma-algebra of F$\mathcal {F}$, and let EG=E(center dot|G)$\mathbf {E}<^>\mathcal {G} = \mathbf { E}(\cdot | \mathcal {G})$ be the corresponding conditional expectation operator. We obtain sharp estimates for the moments of xi-EG xi$\xi - \mathbf {E}<^>\mathcal {G}\xi$ in terms of the moments of xi. This allows us to find the optimal constant in the bounded compact approximation property of Lp([0,1])$L<^>p([0, 1])$, 1<p<infinity$1 < p < \infty$.
引用
收藏
页码:368 / 381
页数:14
相关论文
共 50 条