On Lp resolvent estimates for Laplace-Beltrami operators on compact manifolds

被引:25
|
作者
Ferreira, David Dos Santos [1 ]
Kenig, Carlos E. [2 ]
Salo, Mikko [3 ,4 ]
机构
[1] Univ Paris 13, CNRS, UMR Laga 7539, F-93430 Villetaneuse, France
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[3] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
[4] Univ Jyvaskyla, SF-40351 Jyvaskyla, Finland
基金
芬兰科学院; 美国国家科学基金会;
关键词
Resolvent; Laplace-Beltrami operator; Carleman estimates; Hadamard parametrix; oscillatory integrals; UNIFORM SOBOLEV INEQUALITIES; ABSOLUTE CONTINUITY; UNIQUE CONTINUATION;
D O I
10.1515/forum-2011-0157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we prove L-p estimates for resolvents of Laplace-Beltrami operators on compact Riemannian manifolds, generalizing results of Kenig, Ruiz and Sogge (1987) in the Euclidean case and Shen (2001) for the torus. We follow Sogge (1988) and construct Hadamard's parametrix, then use classical boundedness results on integral operators with oscillatory kernels related to the Carleson and Sjolin condition. Our initial motivation was to obtain L-p Carleman estimates with limiting Carleman weights generalizing those of Jerison and Kenig (1985); we illustrate the pertinence of L-p resolvent estimates by showing the relation with Carleman estimates. Such estimates are useful in the construction of complex geometrical optics solutions to the Schrodinger equation with unbounded potentials, an essential device for solving anisotropic inverse problems.
引用
收藏
页码:815 / 849
页数:35
相关论文
共 50 条