Rates and reversibility of CO2 hydrogenation on Cu-based catalysts

被引:9
|
作者
Lin, Ting C. [1 ]
Bhan, Aditya [1 ]
机构
[1] Univ Minnesota Twin Cities, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
CO2; hydrogenation; Methanol; Kinetics; Forward rates; Reversible reactions; In situ titration; METHANOL SYNTHESIS; ACTIVE-SITE; COPPER; ZNO; NANOPARTICLES; MORPHOLOGY; INTERFACE; KINETICS; CHLORINE; MODEL;
D O I
10.1016/j.jcat.2023.115214
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Kinetics of reaction pathways involved in the conversion of CO2 to methanol and CO on Cu/ZnO/Al2O3 are resolved using in situ chemical titration, steady-state kinetic measurements, and mathematical formalisms for reversibility to probe salient species governing methanol selectivity and yield during CO2 hydrogenation. Across a range of H-2:CO2 = 1:1 to H-2:CO2 = 80.5:1, active site density determined from in situ chlorine uptake remained invariant; hence, observed trends in rates can be interpreted as only arising from reaction kinetics and not from changing active site density. Kinetic and thermodynamic contributions to rates are decoupled to evaluate forward and reverse rates of methanol synthesis and reverse water-gas shift (RWGS) reactions. These kinetic analyses show that the forward rates of methanol synthesis exhibit persistent first order dependence on hydrogen pressure and are inhibited by water more significantly than the forward rates of RWGS. In contrast, the reverse rates of methanol synthesis and RWGS are both inhibited by H-2. Consequently, without any modifications to the Cu/ZnO/Al2O3 catalyst formulation, methanol selectivity can be increased to > 80 % by increasing inlet H-2 partial pressure and methanol yield can be enhanced by similar to 20 % by adding water adsorbents even under conditions far from equilibrium. The kinetic treatments presented herein demonstrate a dearth of H* species during catalysis, provide thermodynamic constraints precluding sequential RWGS and CO hydrogenation as the pathway for methanol synthesis, reveal P-H2 and P-H2O as salient in determining methanol selectivity and yield by impacting both the forward and reverse rates of CO2 hydrogenation on Cu/ZnO/Al2O3, and explicate the fundamentals of novel sorption-enhanced methanol synthesis, which not only alleviates equilibrium constraints but also alters the intrinsic rate at which the system approaches equilibrium.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Direct Conversion of CO2 into Alcohols Using Cu-Based Zeolite Catalysts
    Iltsiou, Dimitra
    Mielby, Jerrik
    Kegnaes, Soren
    CHEMPLUSCHEM, 2024, 89 (01):
  • [32] Understanding oxidation state of Cu-based catalysts for electrocatalytic CO2 reduction
    Zhu, Ping
    Qin, Yuan-Chu
    Cai, Xin-Hao
    Wang, Wen-Min
    Zhou, Ying
    Zhou, Lin-Lin
    Liu, Peng-Hui
    Peng, Lu
    Wang, Wen-Long
    Wu, Qian-Yuan
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 218 : 1 - 24
  • [33] C2+ Selectivity for CO2 Electroreduction on Oxidized Cu-Based Catalysts
    Li, Haobo
    Jiang, Yunling
    Li, Xinyu
    Davey, Kenneth
    Zheng, Yao
    Jiao, Yan
    Qiao, Shi-Zhang
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (26) : 14335 - 14344
  • [34] HYDROGENATION OF CO2 OVER CO/CU/K CATALYSTS
    BAUSSART, H
    DELOBEL, R
    LEBRAS, M
    LEROY, JM
    JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1987, 83 : 1711 - 1718
  • [35] Selective CO2 Hydrogenation to Methanol by Halogen Deposition over a Cu-Based Catalyst
    Corda, Massimo
    Chernyak, Sergei A.
    Marinova, Maya
    Morin, Jean-Charles
    Trentesaux, Martine
    Kondratenko, Vita A.
    Kondratenko, Evgenii V.
    Ordomsky, Vitaly V.
    Khodakov, Andrei Y.
    ACS CATALYSIS, 2024, 14 (23): : 17244 - 17252
  • [36] Designing Cu-Based Tandem Catalysts for CO2 Electroreduction Based on Mass Transport of CO Intermediate
    Cao, Bo
    Li, Fu-Zhi
    Gu, Jun
    ACS CATALYSIS, 2022, 12 (15): : 9735 - 9752
  • [37] Lewis Acid Strength of Interfacial Metal Sites Drives CH3OH Selectivity and Formation Rates on Cu-Based CO2 Hydrogenation Catalysts
    Noh, Gina
    Lam, Erwin
    Bregante, Daniel T.
    Meyet, Jordan
    Sot, Petr
    Flaherty, David W.
    Coperet, Christophe
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (17) : 9650 - 9659
  • [38] The roles of CO and CO2 in high pressure methanol synthesis over Cu-based catalysts
    Nielsen, Niels D.
    Jensen, Anker D.
    Christensen, Jakob M.
    JOURNAL OF CATALYSIS, 2021, 393 : 324 - 334
  • [39] Cu-based materials as co-catalysts for photocatalytic CO2 reduction: A mini review
    Jing, Ya-Nan
    Yin, Xing-Liang
    Li, Lei -Lei
    MATERIALS TODAY SUSTAINABILITY, 2024, 26
  • [40] Enhanced activity of CexZr1-xO2 solid solutions supported Cu-based catalysts for hydrogenation of CO2 to methanol
    Zuo, Junyi
    Na, Wei
    Zhang, Pingyao
    Yang, Xuelei
    Wen, Jianlin
    Zheng, Min
    Wang, Hua
    MOLECULAR CATALYSIS, 2022, 526