Rates and reversibility of CO2 hydrogenation on Cu-based catalysts

被引:9
|
作者
Lin, Ting C. [1 ]
Bhan, Aditya [1 ]
机构
[1] Univ Minnesota Twin Cities, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
CO2; hydrogenation; Methanol; Kinetics; Forward rates; Reversible reactions; In situ titration; METHANOL SYNTHESIS; ACTIVE-SITE; COPPER; ZNO; NANOPARTICLES; MORPHOLOGY; INTERFACE; KINETICS; CHLORINE; MODEL;
D O I
10.1016/j.jcat.2023.115214
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Kinetics of reaction pathways involved in the conversion of CO2 to methanol and CO on Cu/ZnO/Al2O3 are resolved using in situ chemical titration, steady-state kinetic measurements, and mathematical formalisms for reversibility to probe salient species governing methanol selectivity and yield during CO2 hydrogenation. Across a range of H-2:CO2 = 1:1 to H-2:CO2 = 80.5:1, active site density determined from in situ chlorine uptake remained invariant; hence, observed trends in rates can be interpreted as only arising from reaction kinetics and not from changing active site density. Kinetic and thermodynamic contributions to rates are decoupled to evaluate forward and reverse rates of methanol synthesis and reverse water-gas shift (RWGS) reactions. These kinetic analyses show that the forward rates of methanol synthesis exhibit persistent first order dependence on hydrogen pressure and are inhibited by water more significantly than the forward rates of RWGS. In contrast, the reverse rates of methanol synthesis and RWGS are both inhibited by H-2. Consequently, without any modifications to the Cu/ZnO/Al2O3 catalyst formulation, methanol selectivity can be increased to > 80 % by increasing inlet H-2 partial pressure and methanol yield can be enhanced by similar to 20 % by adding water adsorbents even under conditions far from equilibrium. The kinetic treatments presented herein demonstrate a dearth of H* species during catalysis, provide thermodynamic constraints precluding sequential RWGS and CO hydrogenation as the pathway for methanol synthesis, reveal P-H2 and P-H2O as salient in determining methanol selectivity and yield by impacting both the forward and reverse rates of CO2 hydrogenation on Cu/ZnO/Al2O3, and explicate the fundamentals of novel sorption-enhanced methanol synthesis, which not only alleviates equilibrium constraints but also alters the intrinsic rate at which the system approaches equilibrium.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Efficient Electromethanation from CO2 on Monodisperse Cu-Based Catalysts
    Sun, Jiping
    Li, Guangchao
    Xu, Zhanyou
    Xie, Yi
    Wang, Jiexi
    Wang, Ying
    ENERGY & FUELS, 2023, 37 (12) : 8707 - 8713
  • [22] Pulse Manipulation on Cu-Based Catalysts for Electrochemical Reduction of CO2
    Xi, Wanlong
    Zhou, Hexin
    Yang, Peng
    Huang, Huiting
    Tian, Jia
    Ratova, Marina
    Wu, Dan
    ACS CATALYSIS, 2024, 14 (18): : 13697 - 13722
  • [23] Hydrotalcite-like compounds derived highly effective Cu-based catalysts for CO2 hydrogenation to methanol
    Gao, Peng
    Wang, Hui
    Xiao, Shuo
    Zhang, Yanfei
    Wei, Wei
    Sun, Yuhan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [24] CO2 Hydrogenation to CH3OH over Cu-Based Catalysts: Primary and Side Reactions
    Zhao, Dan
    Han, Shanlei
    Kondratenko, Evgenii V.
    CHEMCATCHEM, 2023, 15 (20)
  • [25] Enhanced performance of Cu-based perovskite catalyst for CO2 hydrogenation to methanol
    Shi, Yuxin
    Zhu, Lingjun
    Tang, Jiaqi
    Qiu, Kunzan
    Wang, Shurong
    FUEL, 2025, 393
  • [26] Tuning Structures and Microenvironments of Cu-Based Catalysts for Sustainable CO2 and CO Electroreduction
    Lv, Ximeng
    Liu, Zhengzheng
    Yang, Chao
    Ji, Yali
    Zheng, Gengfeng
    ACCOUNTS OF MATERIALS RESEARCH, 2023, 4 (03): : 264 - 274
  • [27] HALOGEN POISONING OF CU-BASED HYDROGENATION CATALYSTS
    HELDAL, JA
    MORK, PC
    JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, 1980, 57 (02) : A137 - A137
  • [28] Mechanistic insights into the role of zinc oxide, zirconia and ceria supports in Cu-based catalysts for CO2 hydrogenation to methanol
    Fulham, George J.
    Wu, Xianyue
    Liu, Wen
    Marek, Ewa J.
    CHEMICAL ENGINEERING JOURNAL, 2024, 480
  • [29] Tuning activity and selectivity of Cu-based catalysts toward CO2 reduction
    Kattel, Shyam
    Chen, Jingguang
    Rodriguez, Jose
    Liu, Ping
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [30] Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction
    Jia, Yufei
    Li, Fei
    Fan, Ke
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2024, 43 (03)