SCOTCH and SODA: A Transformer Video Shadow Detection Framework

被引:11
|
作者
Liu, Lihao [1 ]
Prost, Jean [2 ]
Zhu, Lei [3 ,4 ]
Papadakis, Nicolas [2 ]
Lio, Pietro [1 ]
Schonlieb, Carola-Bibiane [1 ]
Aviles-Rivero, Angelica I. [1 ]
机构
[1] Univ Cambridge, Cambridge, England
[2] Univ Bordeaux, CNRS, Bordeaux INP, IMB,UMR 5251, F-33400 Talence, France
[3] Hong Kong Univ Sci & Technol Guangzhou, Hong Kong, Peoples R China
[4] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1109/CVPR52729.2023.01007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Shadows in videos are difficult to detect because of the large shadow deformation between frames. In this work, we argue that accounting for shadow deformation is essential when designing a video shadow detection method. To this end, we introduce the shadow deformation attention trajectory (SODA), a new type of video self-attention module, specially designed to handle the large shadow deformations in videos. Moreover, we present a new shadow contrastive learning mechanism (SCOTCH) which aims at guiding the network to learn a unified shadow representation from massive positive shadow pairs across different videos. We demonstrate empirically the effectiveness of our two contributions in an ablation study. Furthermore, we show that SCOTCH and SODA significantly outperforms existing techniques for video shadow detection. Code is available at the project page: https:// lihaoliucambridge.github.io/scotch_and_soda/
引用
收藏
页码:10449 / 10458
页数:10
相关论文
共 50 条
  • [41] Video Sparse Transformer With Attention-Guided Memory for Video Object Detection
    Fujitake, Masato
    Sugimoto, Akihiro
    IEEE ACCESS, 2022, 10 : 65886 - 65900
  • [42] Automatic video object segmentation and shadow detection for surveillance applications
    Yang, H
    Zhang, L
    Tai, HM
    Wang, CJ
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXVII, PTS 1AND 2, 2004, 5558 : 688 - 695
  • [43] Brightness correction and shadow removal for video change detection with UAVs
    Mueller, Thomas
    Erdnuess, Bastian
    AUTONOMOUS SYSTEMS: SENSORS, PROCESSING, AND SECURITY FOR VEHICLES AND INFRASTRUCTURE 2019, 2019, 11009
  • [44] Moving Shadow Detection in Video Using Cepstrum Regular Paper
    Cogun, Fuat
    Cetin, Ahmet Enis
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2013, 10
  • [45] The improvement of the background subtraction and shadow detection in grayscale video sequences
    Wu, Yung-Gi
    Tsai, Chung-Ying
    IMVIP 2007: INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, PROCEEDINGS, 2007, : 206 - 206
  • [46] SpikeMotion: A Transformer Framework for High-Throughput Video Segmentation on FPGA
    Udeji, Uchechukwu Leo
    Margala, Martin
    2024 IEEE 67TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, MWSCAS 2024, 2024, : 818 - 822
  • [47] A Lightweight Cloud and Cloud Shadow Detection Transformer With Prior-Knowledge Guidance
    Fan, Shumin
    Song, Tianyu
    Jin, Guiyue
    Jin, Jiyu
    Li, Qing
    Xia, Xinghui
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [48] A Transformer-Based Framework for Tiny Object Detection
    Liao, Yi-Kai
    Lin, Gong-Si
    Yeh, Mei-Chen
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 373 - 377
  • [49] Framework for current transformer saturation detection and waveform reconstruction
    Tajdinian, Mohsen
    Bagheri, Alireza
    Allahbakhshi, Mehdi
    Seifi, Ali Reza
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2018, 12 (13) : 3167 - 3176
  • [50] A Unified Transformer Framework for Group-Based Segmentation: Co-Segmentation, Co-Saliency Detection and Video Salient Object Detection
    Su, Yukun
    Deng, Jingliang
    Sun, Ruizhou
    Lin, Guosheng
    Su, Hanjing
    Wu, Qingyao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 313 - 325