SCOTCH and SODA: A Transformer Video Shadow Detection Framework

被引:11
|
作者
Liu, Lihao [1 ]
Prost, Jean [2 ]
Zhu, Lei [3 ,4 ]
Papadakis, Nicolas [2 ]
Lio, Pietro [1 ]
Schonlieb, Carola-Bibiane [1 ]
Aviles-Rivero, Angelica I. [1 ]
机构
[1] Univ Cambridge, Cambridge, England
[2] Univ Bordeaux, CNRS, Bordeaux INP, IMB,UMR 5251, F-33400 Talence, France
[3] Hong Kong Univ Sci & Technol Guangzhou, Hong Kong, Peoples R China
[4] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1109/CVPR52729.2023.01007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Shadows in videos are difficult to detect because of the large shadow deformation between frames. In this work, we argue that accounting for shadow deformation is essential when designing a video shadow detection method. To this end, we introduce the shadow deformation attention trajectory (SODA), a new type of video self-attention module, specially designed to handle the large shadow deformations in videos. Moreover, we present a new shadow contrastive learning mechanism (SCOTCH) which aims at guiding the network to learn a unified shadow representation from massive positive shadow pairs across different videos. We demonstrate empirically the effectiveness of our two contributions in an ablation study. Furthermore, we show that SCOTCH and SODA significantly outperforms existing techniques for video shadow detection. Code is available at the project page: https:// lihaoliucambridge.github.io/scotch_and_soda/
引用
收藏
页码:10449 / 10458
页数:10
相关论文
共 50 条
  • [31] Physical models for moving shadow and object detection in video
    Nadimi, S
    Bhanu, B
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (08) : 1079 - 1087
  • [32] The Research of Motion Detection and Shadow Elimination in Video Surveillance
    Qing, Zhili
    Chen, Yuelin
    AUTOMATION EQUIPMENT AND SYSTEMS, PTS 1-4, 2012, 468-471 : 2691 - 2694
  • [33] Video Instance Shadow Detection Under the Sun and Sky
    Xing, Zhenghao
    Wang, Tianyu
    Hu, Xiaowei
    Wu, Haoran
    Fu, Chi-Wing
    Heng, Pheng-Ann
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 5715 - 5726
  • [34] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)
    Hou, Yunzhong
    Zheng, Liang
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 1673 - 1682
  • [35] Shadow Detection of Remote Sensing Image by Fusion of Involution and Shunted Transformer
    Wang, Yifan
    Wang, Jianlin
    Huang, Xian
    Zhou, Tong
    Zhou, Wenjun
    Peng, Bo
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IV, 2024, 14428 : 330 - 342
  • [36] CSDFormer: A cloud and shadow detection method for landsat images based on transformer
    Li, Jiayi
    Wang, Qunming
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 129
  • [37] Sunshine Hours and Sunlight Direction Using Shadow Detection in a Video
    Bansal, Palak
    Sun, Chao
    Lee, Won-Sook
    IMAGE ANALYSIS AND RECOGNITION, ICIAR 2017, 2017, 10317 : 231 - 238
  • [38] A Robust Algorithm for Shadow Removal of Foreground Detection In Video Surveillance
    Wang, Chuanxu
    Zhang, Weijuan
    2009 ASIA-PACIFIC CONFERENCE ON INFORMATION PROCESSING (APCIP 2009), VOL 2, PROCEEDINGS, 2009, : 422 - 425
  • [39] Learning Video Localization on Segment-Level Video Copy Detection with Transformer
    Zhang, Chi
    Liu, Jie
    Zhang, Shuwu
    Zeng, Zhi
    Huang, Ying
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VII, 2023, 14260 : 439 - 450
  • [40] ShadowDeNet: A Moving Target Shadow Detection Network for Video SAR
    Bao, Jinyu
    Zhang, Xiaoling
    Zhang, Tianwen
    Xu, Xiaowo
    REMOTE SENSING, 2022, 14 (02)