SCOTCH and SODA: A Transformer Video Shadow Detection Framework

被引:11
|
作者
Liu, Lihao [1 ]
Prost, Jean [2 ]
Zhu, Lei [3 ,4 ]
Papadakis, Nicolas [2 ]
Lio, Pietro [1 ]
Schonlieb, Carola-Bibiane [1 ]
Aviles-Rivero, Angelica I. [1 ]
机构
[1] Univ Cambridge, Cambridge, England
[2] Univ Bordeaux, CNRS, Bordeaux INP, IMB,UMR 5251, F-33400 Talence, France
[3] Hong Kong Univ Sci & Technol Guangzhou, Hong Kong, Peoples R China
[4] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1109/CVPR52729.2023.01007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Shadows in videos are difficult to detect because of the large shadow deformation between frames. In this work, we argue that accounting for shadow deformation is essential when designing a video shadow detection method. To this end, we introduce the shadow deformation attention trajectory (SODA), a new type of video self-attention module, specially designed to handle the large shadow deformations in videos. Moreover, we present a new shadow contrastive learning mechanism (SCOTCH) which aims at guiding the network to learn a unified shadow representation from massive positive shadow pairs across different videos. We demonstrate empirically the effectiveness of our two contributions in an ablation study. Furthermore, we show that SCOTCH and SODA significantly outperforms existing techniques for video shadow detection. Code is available at the project page: https:// lihaoliucambridge.github.io/scotch_and_soda/
引用
收藏
页码:10449 / 10458
页数:10
相关论文
共 50 条
  • [1] Scotch & Soda
    LeBret, John
    Gratch, Lyndsay Michalik
    Gratch, Ariel
    McDonald, Bonny
    Gamboa, Eddie
    TEXT AND PERFORMANCE QUARTERLY, 2015, 35 (04) : 374 - 403
  • [2] MOVING TARGET SHADOW DETECTION USING TRANSFORMER IN VIDEO SAR
    Wang, Wei
    Zhou, Yuanyuan
    Xie, Zhikun
    Zhang, Tianwen
    Shi, Jun
    Zhang, Xiaoling
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2614 - 2617
  • [3] Learning Shadow Correspondence for Video Shadow Detection
    Ding, Xinpeng
    Yang, Jingwen
    Hu, Xiaowei
    Li, Xiaomeng
    COMPUTER VISION - ECCV 2022, PT XVII, 2022, 13677 : 705 - 722
  • [4] Structure-Aware Transformer for Shadow Detection
    Sun, Wanlu
    Xiang, Liyun
    Zhao, Wei
    IET IMAGE PROCESSING, 2025, 19 (01)
  • [5] Semantic-aware Transformer for shadow detection
    Zhou, Kai
    Fang, Jing-Long
    Wu, Wen
    Shao, Yan-Li
    Wang, Xing-Qi
    Wei, Dan
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 240
  • [6] Shadow-aware decomposed transformer network for shadow detection and removal
    Wang, Xiao
    Yao, Siyuan
    Tang, Yong
    Yang, Sili
    Liu, Zhenbao
    PATTERN RECOGNITION, 2024, 156
  • [7] Cast shadow detection in video segmentation
    Dong, X
    Li, XL
    Liu, ZK
    Yuan, Y
    PATTERN RECOGNITION LETTERS, 2005, 26 (01) : 91 - 99
  • [8] 来SCOTCH&SODA寻找自己
    张雪生
    崔忱歌
    时尚北京, 2015, (06) : 148 - 149
  • [9] Insignificant shadow detection for video segmentation
    Xu, D
    Liu, JZ
    Li, XL
    Liu, ZK
    Tang, X
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2005, 15 (08) : 1058 - 1064
  • [10] Foreground and Shadow Detection for Video Surveillance
    Park, Suwoo
    Yun, Jooseop
    Park, Sehyun
    Do, Yongtae
    PROCEEDINGS OF THE 9TH WSEAS INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMPUTATIONAL GEOMETRY AND ARTIFICIAL VISION (ISCGAV'09), 2009, : 171 - +