ASCFL: Accurate and Speedy Semi-Supervised Clustering Federated Learning

被引:4
|
作者
He, Jingyi [1 ]
Gong, Biyao [1 ]
Yang, Jiadi [1 ]
Wang, Hai [1 ]
Xu, Pengfei [1 ]
Xing, Tianzhang [1 ,2 ]
机构
[1] Northwest Univ, Sch Informat Sci & Technol, Xian 710100, Peoples R China
[2] Northwest Univ, Internet Things Res Ctr, Xian 710100, Peoples R China
来源
TSINGHUA SCIENCE AND TECHNOLOGY | 2023年 / 28卷 / 05期
基金
中国国家自然科学基金;
关键词
federated learning; clustered federated learning; non-Independent Identically Distribution (non-IID) data; similarity indicator; client selection; semi-supervised learning;
D O I
10.26599/TST.2022.9010057
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The influence of non-Independent Identically Distribution (non-IID) data on Federated Learning (FL) has been a serious concern. Clustered Federated Learning (CFL) is an emerging approach for reducing the impact of non-IID data, which employs the client similarity calculated by relevant metrics for clustering. Unfortunately, the existing CFL methods only pursue a single accuracy improvement, but ignore the convergence rate. Additionlly, the designed client selection strategy will affect the clustering results. Finally, traditional semi-supervised learning changes the distribution of data on clients, resulting in higher local costs and undesirable performance. In this paper, we propose a novel CFL method named ASCFL, which selects clients to participate in training and can dynamically adjust the balance between accuracy and convergence speed with datasets consisting of labeled and unlabeled data. To deal with unlabeled data, the prediction labels strategy predicts labels by encoders. The client selection strategy is to improve accuracy and reduce overhead by selecting clients with higher losses participating in the current round. What is more, the similarity-based clustering strategy uses a new indicator to measure the similarity between clients. Experimental results show that ASCFL has certain advantages in model accuracy and convergence speed over the three state-of-the-art methods with two popular datasets.
引用
下载
收藏
页码:823 / 837
页数:15
相关论文
共 50 条
  • [1] CHESSFL: Clustering Hierarchical Embeddings for Semi-Supervised Federated Learning
    Farcas, Allen-Jasmin
    Lee, Myungjin
    Payani, Ali
    Latapie, Hugo
    Kompella, Ramana Rao
    Marculescu, Radu
    9TH ACM/IEEE CONFERENCE ON INTERNET OF THINGS DESIGN AND IMPLEMENTATION, IOTDI 2024, 2024, : 122 - 133
  • [2] Semi-Supervised Federated Heterogeneous Transfer Learning
    Feng, Siwei
    Li, Boyang
    Yu, Han
    Liu, Yang
    Yang, Qiang
    KNOWLEDGE-BASED SYSTEMS, 2022, 252
  • [3] Federated Clustering and Semi-Supervised learning: A new partnership for personalized Human Activity Recognition
    Presotto, Riccardo
    Civitarese, Gabriele
    Bettini, Claudio
    PERVASIVE AND MOBILE COMPUTING, 2023, 88
  • [4] Federated Active Semi-Supervised Learning With Communication Efficiency
    Zhang, Chen
    Xie, Yu
    Bai, Hang
    Hu, Xiongwei
    Yu, Bin
    Gao, Yuan
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (11): : 6744 - 6756
  • [5] Federated Cycling (FedCy): Semi-Supervised Federated Learning of Surgical Phases
    Kassem, Hasan
    Alapatt, Deepak
    Mascagni, Pietro
    Karargyris, Alexandros
    Padoy, Nicolas
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (07) : 1920 - 1931
  • [6] Semi-supervised federated learning on evolving data streams
    Mawuli, Cobbinah B.
    Kumar, Jay
    Nanor, Ebenezer
    Fu, Shangxuan
    Pan, Liangxu
    Yang, Qinli
    Zhang, Wei
    Shao, Junming
    INFORMATION SCIENCES, 2023, 643
  • [7] Federated Learning in Healthcare with Unsupervised and Semi-Supervised Methods
    Panos-Basterra, Juan
    Dolores Ruiz, M.
    Martin-Bautista, Maria J.
    FLEXIBLE QUERY ANSWERING SYSTEMS, FQAS 2023, 2023, 14113 : 182 - 193
  • [8] Misbehavior detection system with semi-supervised federated learning
    Kristianto, Edy
    Lin, Po-Ching
    Hwang, Ren-Hung
    VEHICULAR COMMUNICATIONS, 2023, 41
  • [9] Uncertainty Minimization for Personalized Federated Semi-Supervised Learning
    Shi, Yanhang
    Chen, Siguang
    Zhang, Haijun
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (02): : 1060 - 1073
  • [10] Semi-supervised Clustering with Deep Metric Learning
    Li, Xiaocui
    Yin, Hongzhi
    Zhou, Ke
    Chen, Hongxu
    Sadiq, Shazia
    Zhou, Xiaofang
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2019, 11448 : 383 - 386