Federated Clustering and Semi-Supervised learning: A new partnership for personalized Human Activity Recognition

被引:4
|
作者
Presotto, Riccardo [1 ]
Civitarese, Gabriele [1 ]
Bettini, Claudio [1 ]
机构
[1] Univ Milan, Dipartimento Informat, Via Celoria 18, I-20133 Milan, Italy
关键词
Human Activity Recognition; Federated learning; Clustering; Semi -supervised learning;
D O I
10.1016/j.pmcj.2022.101726
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated Learning (FL) is currently studied by several research groups as a promising paradigm for sensor-based Human Activity Recognition (HAR) to mitigate the privacy and scalability issues of classic centralized approaches. However, in the HAR domain, data is non-independently and identically distributed (non-IID), and personalization is one of the major challenges. Federated Clustering has been recently proposed to mitigate this issue by creating specialized global models for groups of similar users. While this approach significantly improves personalization, it assumes that labeled data are available on each client. In this work, we propose SS-FedCLAR, a novel HAR framework that combines Federated Clustering and Semi-Supervised learning. In SSFedCLAR , each client uses a combination of active learning and label propagation to provide pseudo labels to a large amount of unlabeled data, which is then used to collaboratively train a Federated Clustering model. We evaluated SS-FedCLAR on two well-known public datasets, showing that it outperforms existing semi-supervised FL solutions while reaching recognition rates similar to fully-supervised FL approaches. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] FedHAR: Semi-Supervised Online Learning for Personalized Federated Human Activity Recognition
    Yu, Hongzheng
    Chen, Zekai
    Zhang, Xiao
    Chen, Xu
    Zhuang, Fuzhen
    Xiong, Hui
    Cheng, Xiuzhen
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (06) : 3318 - 3332
  • [2] Semi-supervised and personalized federated activity recognition based on active learning and label propagation
    Presotto R.
    Civitarese G.
    Bettini C.
    Personal and Ubiquitous Computing, 2022, 26 (05) : 1281 - 1298
  • [3] Uncertainty Minimization for Personalized Federated Semi-Supervised Learning
    Shi, Yanhang
    Chen, Siguang
    Zhang, Haijun
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (02): : 1060 - 1073
  • [4] Semi-Supervised Contrastive Learning for Human Activity Recognition
    Liu, Dongxin
    Abdelzaher, Tarek
    17TH ANNUAL INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SENSOR SYSTEMS (DCOSS 2021), 2021, : 45 - 53
  • [5] CHESSFL: Clustering Hierarchical Embeddings for Semi-Supervised Federated Learning
    Farcas, Allen-Jasmin
    Lee, Myungjin
    Payani, Ali
    Latapie, Hugo
    Kompella, Ramana Rao
    Marculescu, Radu
    9TH ACM/IEEE CONFERENCE ON INTERNET OF THINGS DESIGN AND IMPLEMENTATION, IOTDI 2024, 2024, : 122 - 133
  • [6] ASCFL: Accurate and Speedy Semi-Supervised Clustering Federated Learning
    He, Jingyi
    Gong, Biyao
    Yang, Jiadi
    Wang, Hai
    Xu, Pengfei
    Xing, Tianzhang
    TSINGHUA SCIENCE AND TECHNOLOGY, 2023, 28 (05): : 823 - 837
  • [7] SemiPFL: Personalized Semi-Supervised Federated Learning Framework for Edge Intelligence
    Tashakori, Arvin
    Zhang, Wenwen
    Wang, Z. Jane
    Servati, Peyman
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (10) : 9161 - 9176
  • [8] Activity recognition based on semi-supervised learning
    Guan, Donghai
    Yuan, Weiwei
    Lee, Young-Koo
    Gavrilov, Andrey
    Lee, Sungyoung
    13TH IEEE INTERNATIONAL CONFERENCE ON EMBEDDED AND REAL-TIME COMPUTING SYSTEMS AND APPLICATIONS, PROCEEDINGS, 2007, : 469 - +
  • [9] Prediction Based Semi-Supervised Online Personalized Federated Learning for Indoor Localization
    Wu, Zheshun
    Wu, Xiaoping
    Long, Yunliang
    IEEE SENSORS JOURNAL, 2022, 22 (11) : 10640 - 10654
  • [10] An active semi-supervised deep learning model for human activity recognition
    Bi, Haixia
    Perello-Nieto, Miquel
    Santos-Rodriguez, Raul
    Flach, Peter
    Craddock, Ian
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2022, 14 (10) : 13049 - 13065