Misbehavior detection system with semi-supervised federated learning

被引:1
|
作者
Kristianto, Edy [1 ]
Lin, Po-Ching [1 ]
Hwang, Ren-Hung [2 ]
机构
[1] Natl Chung Cheng Univ, Dept Comp Sci & Informat Engn, Chiayi, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Coll Artificial Intelligence, Tainan, Taiwan
关键词
Misbehavior detection system; Semi-supervised learning; V2X communications; Federated learning; AUTHORIZATION USAGE CONTROL; SAFETY DECIDABILITY;
D O I
10.1016/j.vehcom.2023.100597
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
V2X communications can enhance transportation safety by exchanging safety information between vehicles, road infrastructures, networks, and pedestrians. However, the safety messages are vulnerable to disruption from faulty components or an attack that can cause misinformation. Recently, a machine learning-based misbehavior detection system (MDS) has been widely investigated to detect the misbehaving vehicles to secure the V2X communications. Nonetheless, machine learning models need sufficient labeled data for learning purposes. However, the volume of unlabeled data is usually larger than that of labeled data in practice. Moreover, transferring the large dataset to a centralized learning model will consume much bandwidth. Thus, we propose a semi-supervised federated learning MDS to overcome the limitations of unlabeled data and bring the training close to the data sources to reduce the bandwidth to the core network. Overall, our model with only limited labeled data training (5%-30%) can achieve the F1-score up to 0.96 and the recall up to 0.95. The F1-score is up to 0.26 higher and the recall is up to 0.29 higher than the performance of centralized supervised learning. The federated learning model can reduce the core network bandwidth utilization by up to 95%.(c) 2023 Elsevier Inc. All rights reserved.
引用
下载
收藏
页数:17
相关论文
共 50 条
  • [1] Intrusion detection for Softwarized Networks with Semi-supervised Federated Learning
    Aouedi, Ons
    Piamrat, Kandaraj
    Muller, Guillaume
    Singh, Kamal
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5244 - 5249
  • [2] Navigating Data Heterogeneity in Federated Learning: A Semi-Supervised Federated Object Detection
    Kim, Taehyeon
    Lin, Eric
    Lee, Junu
    Lau, Christian
    Mugunthan, Vaikkunth
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [3] Semi-Supervised Federated Heterogeneous Transfer Learning
    Feng, Siwei
    Li, Boyang
    Yu, Han
    Liu, Yang
    Yang, Qiang
    KNOWLEDGE-BASED SYSTEMS, 2022, 252
  • [4] A Semi-Supervised Federated Learning Scheme via Knowledge Distillation for Intrusion Detection
    Zhao, Ruijie
    Yang, Linbo
    Wang, Yijun
    Xue, Zhi
    Gui, Guan
    Ohtsukit, Tomoaki
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 2688 - 2693
  • [5] Federated Active Semi-Supervised Learning With Communication Efficiency
    Zhang, Chen
    Xie, Yu
    Bai, Hang
    Hu, Xiongwei
    Yu, Bin
    Gao, Yuan
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (11): : 6744 - 6756
  • [6] FedMSE: Semi-supervised federated learning approach for IoT network intrusion detection
    Nguyen, Van Tuan
    Beuran, Razvan
    Computers and Security, 2025, 151
  • [7] Federated Cycling (FedCy): Semi-Supervised Federated Learning of Surgical Phases
    Kassem, Hasan
    Alapatt, Deepak
    Mascagni, Pietro
    Karargyris, Alexandros
    Padoy, Nicolas
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (07) : 1920 - 1931
  • [8] Semi-supervised federated learning on evolving data streams
    Mawuli, Cobbinah B.
    Kumar, Jay
    Nanor, Ebenezer
    Fu, Shangxuan
    Pan, Liangxu
    Yang, Qinli
    Zhang, Wei
    Shao, Junming
    INFORMATION SCIENCES, 2023, 643
  • [9] Federated Learning in Healthcare with Unsupervised and Semi-Supervised Methods
    Panos-Basterra, Juan
    Dolores Ruiz, M.
    Martin-Bautista, Maria J.
    FLEXIBLE QUERY ANSWERING SYSTEMS, FQAS 2023, 2023, 14113 : 182 - 193
  • [10] Uncertainty Minimization for Personalized Federated Semi-Supervised Learning
    Shi, Yanhang
    Chen, Siguang
    Zhang, Haijun
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (02): : 1060 - 1073