Graphene Nano-Optics in the Terahertz Gap

被引:6
|
作者
Feres, Flavio H. [1 ,2 ,3 ]
Barcelos, Ingrid D. [2 ]
Cadore, Alisson R.
Wehmeier, Lukas [4 ]
Noerenberg, Tobias [3 ,5 ]
Mayer, Rafael A. [1 ,2 ]
Freitas, Raul O. [2 ]
Eng, Lukas M. [3 ,5 ]
Kehr, Susanne C. [3 ,5 ]
Maia, Francisco C. B. [1 ,2 ]
机构
[1] State Univ Campinas UNICAMP, Gleb Wataghin Inst Phys, BR-13083859 Campinas, SP, Brazil
[2] Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Synchrotron Light Lab LNLS, BR-13083970 Campinas, SP, Brazil
[3] Tech Univ Dresden, Inst Appl Phys, D-01062 Dresden, Germany
[4] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
[5] Tech Univ Dresden, Wurzburg Dresden Cluster Excellence EXC Ctqmat 214, D-01062 Dresden, Germany
基金
巴西圣保罗研究基金会;
关键词
graphene; terahertz; plasmon-polaritons; near-field; free-electron laser; FIELD; SCATTERING; SUPERLENS; PLASMONS;
D O I
10.1021/acs.nanolett.3c00578
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene nano-optics at terahertz (THz) frequencies (nu) is theoretically anticipated to feature extraordinary effects. However, interrogating such phenomena is nontrivial, since the atomically thin graphene dimensionally mismatches the THz radiation wavelength reaching hundreds of micrometers. Greater challenges happen in the THz gap (0.1-10 THz) wherein light sources are scarce. To surpass these barriers, we use a nanoscope illuminated by a highly brilliant and tunable free-electron laser to image the graphene nano-optical response from 1.5 to 6.0 THz. For nu < 2 THz, we observe a metal-like behavior of graphene, which screens optical fields akin to noble metals, since this excitation range approaches its charge relaxation frequency. At 3.8 THz, plasmonic resonances cause a field-enhancement effect (FEE) that improves the graphene imaging power. Moreover, we show that the metallic behavior and the FEE are tunable upon electrical doping, thus providing further control of these graphene nano-optical properties in the THz gap.
引用
收藏
页码:3913 / 3920
页数:8
相关论文
共 50 条
  • [41] Space-time control in ultrafast nano-optics
    Brixner, T
    Schneider, J
    Pfeiffer, W
    de Abajo, FJG
    [J]. ULTRAFAST PHENOMENA XIV, 2005, 79 : 670 - 672
  • [42] Nonlinear nano-optics: Probing one exciton at a time
    Bonadeo, NH
    Chen, G
    Gammon, D
    Katzer, DS
    Park, D
    Steel, DG
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (13) : 2759 - 2762
  • [43] Terahertz graphene optics
    Rouhi, Nima
    Capdevila, Santiago
    Jain, Dheeraj
    Zand, Katayoun
    Wang, Yung Yu
    Brown, Elliott
    Jofre, Lluis
    Burke, Peter
    [J]. NANO RESEARCH, 2012, 5 (10) : 667 - 678
  • [44] Terahertz graphene optics
    Nima Rouhi
    Santiago Capdevila
    Dheeraj Jain
    Katayoun Zand
    Yung Yu Wang
    Elliott Brown
    Lluis Jofre
    Peter Burke
    [J]. Nano Research, 2012, 5 : 667 - 678
  • [45] Nano-optics for chemical and materials analysis on the nanoscale.
    Stranick, SJ
    Chase, DB
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 228 : U165 - U165
  • [46] Pseudospectral Modeling of Nano-Optics in Ag Sphere Arrays
    Lin, Bang-Yan
    Teng, Chun-Hao
    Chang, Hung-Chun
    Hsiao, Hui-Hsin
    Wang, Juen-Kai
    Wang, Yuh-Lin
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2010, 45 (1-3) : 429 - 446
  • [47] Interface nano-optics with van der Waals polaritons
    Qing Zhang
    Guangwei Hu
    Weiliang Ma
    Peining Li
    Alex Krasnok
    Rainer Hillenbrand
    Andrea Alù
    Cheng-Wei Qiu
    [J]. Nature, 2021, 597 : 187 - 195
  • [48] Nano-optics and near-field microscopy - Preface
    Richards, D
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1817): : 699 - 700
  • [49] Nano-optics boost projection-display performance
    Wang, Jian
    O'Brien, Nada
    Light, Maria
    [J]. LASER FOCUS WORLD, 2006, 42 (11): : S12 - S14
  • [50] NANO-OPTICS Steering Dyakonov-like waves
    Noginov, Mikhail A.
    [J]. NATURE NANOTECHNOLOGY, 2014, 9 (06) : 414 - +