Graphene Nano-Optics in the Terahertz Gap

被引:6
|
作者
Feres, Flavio H. [1 ,2 ,3 ]
Barcelos, Ingrid D. [2 ]
Cadore, Alisson R.
Wehmeier, Lukas [4 ]
Noerenberg, Tobias [3 ,5 ]
Mayer, Rafael A. [1 ,2 ]
Freitas, Raul O. [2 ]
Eng, Lukas M. [3 ,5 ]
Kehr, Susanne C. [3 ,5 ]
Maia, Francisco C. B. [1 ,2 ]
机构
[1] State Univ Campinas UNICAMP, Gleb Wataghin Inst Phys, BR-13083859 Campinas, SP, Brazil
[2] Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Synchrotron Light Lab LNLS, BR-13083970 Campinas, SP, Brazil
[3] Tech Univ Dresden, Inst Appl Phys, D-01062 Dresden, Germany
[4] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
[5] Tech Univ Dresden, Wurzburg Dresden Cluster Excellence EXC Ctqmat 214, D-01062 Dresden, Germany
基金
巴西圣保罗研究基金会;
关键词
graphene; terahertz; plasmon-polaritons; near-field; free-electron laser; FIELD; SCATTERING; SUPERLENS; PLASMONS;
D O I
10.1021/acs.nanolett.3c00578
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene nano-optics at terahertz (THz) frequencies (nu) is theoretically anticipated to feature extraordinary effects. However, interrogating such phenomena is nontrivial, since the atomically thin graphene dimensionally mismatches the THz radiation wavelength reaching hundreds of micrometers. Greater challenges happen in the THz gap (0.1-10 THz) wherein light sources are scarce. To surpass these barriers, we use a nanoscope illuminated by a highly brilliant and tunable free-electron laser to image the graphene nano-optical response from 1.5 to 6.0 THz. For nu < 2 THz, we observe a metal-like behavior of graphene, which screens optical fields akin to noble metals, since this excitation range approaches its charge relaxation frequency. At 3.8 THz, plasmonic resonances cause a field-enhancement effect (FEE) that improves the graphene imaging power. Moreover, we show that the metallic behavior and the FEE are tunable upon electrical doping, thus providing further control of these graphene nano-optical properties in the THz gap.
引用
收藏
页码:3913 / 3920
页数:8
相关论文
共 50 条
  • [21] Nano-optics from sensing to waveguiding
    Surbhi Lal
    Stephan Link
    Naomi J. Halas
    [J]. Nature Photonics, 2007, 1 : 641 - 648
  • [22] Strong-field nano-optics
    Dombi, Peter
    Papa, Zsuzsanna
    Vogelsang, Jan
    Yalunin, Sergey V.
    Sivis, Murat
    Herink, Georg
    Schaefer, Sascha
    Gross, Petra
    Ropers, Claus
    Lienau, Christoph
    [J]. REVIEWS OF MODERN PHYSICS, 2020, 92 (02)
  • [23] Ultra-fast nano-optics
    Vasa, Parinda
    Ropers, Claus
    Pomraenke, Robert
    Lienau, Christoph
    [J]. LASER & PHOTONICS REVIEWS, 2009, 3 (06) : 483 - 507
  • [24] Polarisation effects in gradient nano-optics
    Erokhin, N. S.
    Zueva, Yu. M.
    Shvartsburg, A. B.
    [J]. QUANTUM ELECTRONICS, 2013, 43 (09) : 785 - 790
  • [25] Nano-optics of surface plasmon polaritons
    Zayats, AV
    Smolyaninov, II
    Maradudin, AA
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 408 (3-4): : 131 - 314
  • [26] NANO-OPTICS The Purcell factor of nanoresonators
    Agio, Mario
    Cano, Diego Martin
    [J]. NATURE PHOTONICS, 2013, 7 (09) : 674 - 675
  • [27] Physics of nano-optics spur sophisticated models
    Sukharev, Maxim
    [J]. LASER FOCUS WORLD, 2011, 47 (05): : 39 - +
  • [28] Nano-optics - Optical antennas tuned to pitch
    Novotny, Lukas
    [J]. NATURE, 2008, 455 (7215) : 887 - 887
  • [29] Nano-optics - Gold loses its lustre
    Sambles, R
    [J]. NATURE, 2005, 438 (7066) : 295 - 296
  • [30] Organic Lanthanide Crystals for Nano-Optics Studies
    Hussain, Rabia
    Bullock, Alexis
    Gable, Danielle
    Griffin, Jade
    Noginova, Natalia
    [J]. MRS ADVANCES, 2016, 1 (23): : 1715 - 1719