Graphene Nano-Optics in the Terahertz Gap

被引:6
|
作者
Feres, Flavio H. [1 ,2 ,3 ]
Barcelos, Ingrid D. [2 ]
Cadore, Alisson R.
Wehmeier, Lukas [4 ]
Noerenberg, Tobias [3 ,5 ]
Mayer, Rafael A. [1 ,2 ]
Freitas, Raul O. [2 ]
Eng, Lukas M. [3 ,5 ]
Kehr, Susanne C. [3 ,5 ]
Maia, Francisco C. B. [1 ,2 ]
机构
[1] State Univ Campinas UNICAMP, Gleb Wataghin Inst Phys, BR-13083859 Campinas, SP, Brazil
[2] Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Synchrotron Light Lab LNLS, BR-13083970 Campinas, SP, Brazil
[3] Tech Univ Dresden, Inst Appl Phys, D-01062 Dresden, Germany
[4] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
[5] Tech Univ Dresden, Wurzburg Dresden Cluster Excellence EXC Ctqmat 214, D-01062 Dresden, Germany
基金
巴西圣保罗研究基金会;
关键词
graphene; terahertz; plasmon-polaritons; near-field; free-electron laser; FIELD; SCATTERING; SUPERLENS; PLASMONS;
D O I
10.1021/acs.nanolett.3c00578
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene nano-optics at terahertz (THz) frequencies (nu) is theoretically anticipated to feature extraordinary effects. However, interrogating such phenomena is nontrivial, since the atomically thin graphene dimensionally mismatches the THz radiation wavelength reaching hundreds of micrometers. Greater challenges happen in the THz gap (0.1-10 THz) wherein light sources are scarce. To surpass these barriers, we use a nanoscope illuminated by a highly brilliant and tunable free-electron laser to image the graphene nano-optical response from 1.5 to 6.0 THz. For nu < 2 THz, we observe a metal-like behavior of graphene, which screens optical fields akin to noble metals, since this excitation range approaches its charge relaxation frequency. At 3.8 THz, plasmonic resonances cause a field-enhancement effect (FEE) that improves the graphene imaging power. Moreover, we show that the metallic behavior and the FEE are tunable upon electrical doping, thus providing further control of these graphene nano-optical properties in the THz gap.
引用
收藏
页码:3913 / 3920
页数:8
相关论文
共 50 条
  • [1] Silk nano-optics
    David Pile
    [J]. Nature Photonics, 2016, 10 (1) : 2 - 2
  • [2] Nanocrystals and nano-optics
    Brus, LE
    Trautman, JK
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1995, 353 (1703): : 313 - 321
  • [3] Nano-optics of bismuth nanowires
    Black, MR
    Hagelstein, PL
    Dresselhaus, MS
    [J]. QUANTUM CONFINED SEMICONDUCTOR NANOSTRUCTURES, 2003, 737 : 635 - 640
  • [4] Nanophotonics, nano-optics and nanospectroscopy
    Meixner, Alfred J.
    [J]. BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2011, 2 : 499 - 500
  • [5] Nano-optics gets practical
    Fratalocchi, Andrea
    Dodson, Christopher M.
    Zia, Rashid
    Genevet, Patrice
    Verhagen, Ewold
    Altug, Hatice
    Sorger, Volker J.
    [J]. NATURE NANOTECHNOLOGY, 2015, 10 (01) : 11 - 15
  • [6] Nano-Optics in 2020 ± 20
    Sandoghdar, Vahid
    [J]. NANO LETTERS, 2020, 20 (07) : 4721 - 4723
  • [7] Programmable nano-optics and photonics
    Gu, Tian
    Majumdar, Arka
    Teng, Jinghua
    [J]. NANOPHOTONICS, 2024, 13 (12) : 2047 - 2049
  • [8] Reciprocity in nonlocal nano-optics
    Leung, P. T.
    Chang, R.
    [J]. JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2008, 10 (07):
  • [9] Nano-optics gets practical
    [J]. Nature Nanotechnology, 2015, 10 : 11 - 15
  • [10] Handbook of Nano-optics and Nanophotonics
    Dobson, Peter J.
    [J]. CONTEMPORARY PHYSICS, 2015, 56 (02) : 244 - 245