FewFaceNet: A Lightweight Few-Shot Learning-based Incremental Face Authentication for Edge Cameras

被引:1
|
作者
Sufian, Abu [1 ]
Ghosh, Anirudha [2 ]
Barman, Debaditya [2 ]
Leo, Marco [3 ]
Distante, Cosimo [3 ]
Li, Baihua [4 ]
机构
[1] Univ Gour Banga, English Bazar, India
[2] Visva Bharati, Santini Ketan, W Bengal, India
[3] CNR, ISASI, I-73100 Lecce, Italy
[4] Loughborough Univ, Loughborough, Leics, England
关键词
RECOGNITION METHOD;
D O I
10.1109/ICCVW60793.2023.00216
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Face authentication is a widely used technique for verifying identity, but current approaches encounter limitations due to their reliance on extensive computing resources, large datasets, and well-lit environments. Additionally, these approaches often lack adaptability to accommodate new individuals and continuously improve performance. These constraints make them impractical for various edge applications such as smart home security, bio-metric, surveillance system, etc. To address these challenges, this paper introduces a novel technique called FewFaceNet, which leverages a very lightweight few-shot learning-based incremental face authentication. Unlike existing methods, FewFaceNet employs a shallow lightweight backbone model that can start work with just one face image and also can handle infrared images in dark environments. These features make it highly suitable for deployment on small-edge cameras like door security cameras. We curated a diverse dataset from various reliable sources, including our own infrared camera to train and evaluate the model. Through extensive experimentation, we assessed the performance of FewFaceNet with different backbone ablation studies across one-shot to five-shot scenarios. The experimental results convincingly demonstrate the effectiveness of FewFaceNet in overcoming the limitations of existing approaches. The code and data available at: https://github.com/Sufianlab/FewFaceNet.
引用
收藏
页码:2010 / 2019
页数:10
相关论文
共 50 条
  • [21] Incremental Few-Shot Learning for Pedestrian Attribute Recognition
    Xiang, Liuyu
    Jin, Xiaoming
    Ding, Guiguang
    Han, Jungong
    Li, Leida
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3912 - 3918
  • [22] Coarse-To-Fine Incremental Few-Shot Learning
    Xiang, Xiang
    Tan, Yuwen
    Wan, Qian
    Ma, Jing
    Yuille, Alan
    Hager, Gregory D.
    COMPUTER VISION, ECCV 2022, PT XXXI, 2022, 13691 : 205 - 222
  • [23] Graph Few-shot Class-incremental Learning
    Tan, Zhen
    Ding, Kaize
    Guo, Ruocheng
    Liu, Huan
    WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2022, : 987 - 996
  • [24] Constrained Few-shot Class-incremental Learning
    Hersche, Michael
    Karunaratne, Geethan
    Cherubini, Giovanni
    Benini, Luca
    Sebastian, Abu
    Rahimi, Abbas
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9047 - 9057
  • [25] A Deep Learning-Based Method for Bearing Fault Diagnosis with Few-Shot Learning
    Li, Yang
    Gu, Xiaojiao
    Wei, Yonghe
    SENSORS, 2024, 24 (23)
  • [26] Causal Inference-based Few-Shot Class-Incremental Learning
    Zhou, Weiwei
    Xiao, Guoqiang
    Lew, Michael S.
    Wu, Song
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 478 - 487
  • [27] A Few-Shot Learning-Based Material Recognition Scheme Using Smartphones
    Kim, Yeonju
    Yoon, Jeonghyeon
    Kim, Seungku
    APPLIED SCIENCES-BASEL, 2025, 15 (01):
  • [28] Blessing of dimensionality at the edge and geometry of few-shot learning
    Tyukin, Ivan Y.
    Gorban, Alexander N.
    McEwan, Alistair A.
    Meshkinfamfard, Sepehr
    Tang, Lixin
    INFORMATION SCIENCES, 2021, 564 : 124 - 143
  • [29] Progressive Learning Strategy for Few-Shot Class-Incremental Learning
    Hu, Kai
    Wang, Yunjiang
    Zhang, Yuan
    Gao, Xieping
    IEEE TRANSACTIONS ON CYBERNETICS, 2025,
  • [30] Forward Compatible Few-Shot Class-Incremental Learning
    Zhou, Da-Wei
    Wang, Fu-Yun
    Ye, Han-Jia
    Ma, Liang
    Pu, Shiliang
    Zhan, De-Chuan
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9036 - 9046