The physics of gain relevant to inertial fusion energy target designs

被引:4
|
作者
Trickey, W. [1 ,2 ]
Goncharov, V. N. [1 ,2 ]
Betti, R. [1 ,2 ,3 ]
Campbell, E. M. [4 ]
Collins, T. J. B. [1 ,2 ]
Follett, R. K. [1 ,2 ]
机构
[1] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
[2] Univ Rochester, Dept Mech Engn, Rochester, NY 14611 USA
[3] Univ Rochester, Dept Phys & Astron, Rochester, NY 14624 USA
[4] MCM Consulting, 17117 Tallow Tree Lane, San Diego, CA 97127 USA
关键词
MASS ABLATION RATE; CONFINEMENT FUSION; LASER FUSION; IGNITION;
D O I
10.1063/5.0167405
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In inertial confinement fusion, pellets of deuterium tritium fuel are compressed and heated to the conditions where they undergo fusion and release energy. The target gain (ratio of energy released from the fusion reactions to the energy in the drive source) is a key parameter in determining the power flow and economics of an inertial fusion energy (IFE) power plant. In this study, the physics of gain is explored for laser-direct-drive targets with driver energy at the megajoule scale. This analysis is performed with the assumption of next-generation laser technologies that are expected to increase convergent drive pressures to over 200 Mbar. This is possible with the addition of bandwidth to the laser spectrum and by employing focal-spot zooming. Simple physics arguments are used to derive scaling laws that describe target gain as a function of laser energy, adiabat, ablation pressure, and implosion velocity. Scaling laws are found for the unablated mass, ablation pressure, areal density, implosion velocity, and in-flight aspect ratio. Those scaling laws are then used to explore the design space for IFE targets.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A rep rate KrF system to address issues relevant to inertial fusion energy
    Sethian, JD
    Obenschain, SP
    Lehmberg, RH
    McGeoch, MW
    FUSION ENGINEERING AND DESIGN, 1999, 44 : 371 - 375
  • [42] Dynamics and Power Balance of Near Unity Target Gain Inertial Confinement Fusion Implosions
    Pak, A.
    Divol, L.
    Casey, D. T.
    Khan, S. F.
    Kritcher, A. L.
    Ralph, J. E.
    Tommasini, R.
    Trosseille, C.
    Zylstra, A. B.
    Baker, K. L.
    Birge, N. W.
    Bionta, R.
    Bachmann, B.
    Dewald, E. L.
    Doeppner, T.
    Freeman, M. S.
    Fittinghoff, D. N.
    Geppert-Kleinrath, V.
    Geppert-Kleinrath, H.
    Hahn, K. D.
    Hohenberger, M.
    Holder, J.
    Kerr, S.
    Kim, Y.
    Kozioziemski, B.
    Lamb, K.
    MacGowan, B. J.
    MacPhee, A. G.
    Meaney, K. D.
    Moore, A. S.
    Schlossberg, D. J.
    Stoupin, S.
    Volegov, P.
    Wilde, C.
    Young, C. V.
    Landen, O. L.
    Town, R. P. J.
    PHYSICAL REVIEW LETTERS, 2023, 131 (06)
  • [43] PHYSICS AND PROSPECTS OF INERTIAL CONFINEMENT FUSION
    BASKO, MM
    PLASMA PHYSICS AND CONTROLLED FUSION, 1993, 35 : B81 - B90
  • [44] PLASMA PHYSICS - INERTIAL CONFINEMENT OF FUSION
    KEY, MH
    EVANS, RG
    NATURE, 1985, 313 (5998) : 94 - 95
  • [45] Development of position measurement unit for flying inertial fusion energy target
    Tsuji, R.
    Endo, T.
    Yoshida, H.
    Norimatsu, T.
    8TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA 2013), 2016, 688
  • [46] Demonstrating a cost-effective target supply for inertial fusion energy
    Goodin, DT
    Alexander, NB
    Besenbruch, GE
    Brown, LC
    Nobile, A
    Petzoldt, RW
    Rickman, WS
    Schroen, D
    Vermillion, B
    FUSION SCIENCE AND TECHNOLOGY, 2003, 44 (02) : 279 - 283
  • [47] Inertial fusion energy target output and chamber response: Calculations and experiments
    Peterson, RR
    Haynes, DA
    Golovkin, IE
    Moses, GA
    PHYSICS OF PLASMAS, 2002, 9 (05) : 2287 - 2292
  • [48] Design of an inertial fusion energy target tracking and position prediction system
    Petzoldt, RW
    Cherry, M
    Alexander, NB
    Goodin, DT
    Besenbruch, GE
    Schultz, KR
    FUSION TECHNOLOGY, 2001, 39 (02): : 678 - 683
  • [49] Developing target injection and tracking for inertial fusion energy power plants
    Goodin, DT
    Alexander, NB
    Gibson, CR
    Nobile, A
    Petzoldt, RW
    Siegel, NP
    Thompson, L
    NUCLEAR FUSION, 2001, 41 (05) : 527 - 535
  • [50] Flying metal pipe for target transport in inertial fusion energy reactor
    Tsuji, R
    FUSION SCIENCE AND TECHNOLOGY, 2003, 43 (03) : 327 - 333