The physics of gain relevant to inertial fusion energy target designs

被引:4
|
作者
Trickey, W. [1 ,2 ]
Goncharov, V. N. [1 ,2 ]
Betti, R. [1 ,2 ,3 ]
Campbell, E. M. [4 ]
Collins, T. J. B. [1 ,2 ]
Follett, R. K. [1 ,2 ]
机构
[1] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
[2] Univ Rochester, Dept Mech Engn, Rochester, NY 14611 USA
[3] Univ Rochester, Dept Phys & Astron, Rochester, NY 14624 USA
[4] MCM Consulting, 17117 Tallow Tree Lane, San Diego, CA 97127 USA
关键词
MASS ABLATION RATE; CONFINEMENT FUSION; LASER FUSION; IGNITION;
D O I
10.1063/5.0167405
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In inertial confinement fusion, pellets of deuterium tritium fuel are compressed and heated to the conditions where they undergo fusion and release energy. The target gain (ratio of energy released from the fusion reactions to the energy in the drive source) is a key parameter in determining the power flow and economics of an inertial fusion energy (IFE) power plant. In this study, the physics of gain is explored for laser-direct-drive targets with driver energy at the megajoule scale. This analysis is performed with the assumption of next-generation laser technologies that are expected to increase convergent drive pressures to over 200 Mbar. This is possible with the addition of bandwidth to the laser spectrum and by employing focal-spot zooming. Simple physics arguments are used to derive scaling laws that describe target gain as a function of laser energy, adiabat, ablation pressure, and implosion velocity. Scaling laws are found for the unablated mass, ablation pressure, areal density, implosion velocity, and in-flight aspect ratio. Those scaling laws are then used to explore the design space for IFE targets.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Shock ignition target design for inertial fusion energy
    Schmitt, Andrew J.
    Bates, Jason W.
    Obenschain, Steven P.
    Zalesak, Steven T.
    Fyfe, David E.
    PHYSICS OF PLASMAS, 2010, 17 (04)
  • [22] Recent theoretical and experimental results on inertial fusion energy physics
    Velarde, G
    Perlado, JM
    Alonso, M
    Bravo, E
    Cabellos, O
    Domínguez, E
    Eliezer, S
    Falquina, R
    Rubiano, JG
    Gil, JM
    del Río, JG
    González, AI
    León, PT
    Lodi, D
    Marian, J
    Martel, P
    Martínez-Val, JM
    Mínguez, E
    Ogando, F
    Piera, M
    Prieto, J
    Relaño, A
    Reyes, S
    Rodríguez, A
    Rodríguez, R
    Salvador, M
    Sanz, J
    Senz, DG
    Sauvan, P
    Velarde, M
    Velarde, P
    LASER INTERACTION WITH MATTER: MEMORIAL TO ACADEMICIAN, NOBEL LAUREATE NG BASOV, 2003, 5228 : 196 - 206
  • [23] GALADRIEL: A facility for advancing engineering science relevant to rep-rated high energy density physics and inertial fusion energy experiments
    Collins, G. W.
    McGuffey, C.
    Jaris, M.
    Vollmer, D.
    Dautt-Silva, A.
    Linsenmayer, E.
    Keller, A.
    Ramirez, J. C.
    Sammuli, B.
    Margo, M.
    Manuel, M. J. -E.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (11):
  • [24] Novel Target Designs to Mitigate Hydrodynamic Instabilities Growth in Inertial Confinement Fusion
    Qiao, Xiumei
    Lan, Ke
    PHYSICAL REVIEW LETTERS, 2021, 126 (18)
  • [25] Inertial fusion target studies:: Heavy-ion target design and fast ignitor physics
    Atzeni, S
    Ciampi, ML
    Piriz, AR
    Temporal, M
    Meyer-Ter-Vehn, J
    Basko, M
    Pukhov, A
    Rickert, A
    Maruhn, J
    Kang, KH
    Lutz, KJ
    Ramis, R
    Ramirez, J
    Sanz, J
    Ibañez, LF
    FUSION ENERGY 1996, VOL 3, 1997, : 115 - 121
  • [26] Present understanding of ignition and gain using indirect-drive inertial confinement fusion target designs on the US National Ignition Facility
    Hurricane, O. A.
    Allen, A.
    Bachmann, B. L.
    Baker, K. L.
    Baxamusa, S.
    Bhandarkar, S. D.
    Biener, J.
    Bionta, S. R. M.
    Braun, T.
    Briggs, T.
    Brunton, G.
    Casey, D. T.
    Chapman, T.
    Choate, C.
    Clark, D. S.
    Dewald, E.
    Dinicola, J-m
    Divol, L.
    Do, A.
    Fehrenbach, T.
    Fittinghoff, D. N.
    Gatu Johnson, M.
    Geppert Kleinrath, H.
    Geppert Kleinrath, V
    Haan, S.
    Hilsabeck, T. J.
    Hinkel, D. E.
    Hohenberger, M.
    Humbird, K. D.
    Izumi, N.
    Kong, C.
    Kritcher, A. L.
    Landen, O. L.
    Lindl, J.
    Macgowan, B. J.
    Mackinnon, A. J.
    Maclaren, S. A.
    Marinak, M.
    Meeuwsen, R.
    Michel, P.
    Milovich, J.
    Meaney, K.
    Millot, M.
    Moody, J. D.
    Moore, A. S.
    Nikroo, A.
    Nora, R.
    Pak, A.
    Ralph, J. E.
    Ratledge, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2025, 67 (01)
  • [27] Addressing the issues of target fabrication and injection for inertial fusion energy
    Goodin, DT
    Nobile, A
    Hoffer, J
    Nikroo, A
    Besenbruch, GE
    Brown, LC
    Maxwell, JL
    Meier, WR
    Norimatsu, T
    Pulsifer, J
    Rickman, WS
    Steckle, W
    Stephens, EH
    Tillack, M
    FUSION ENGINEERING AND DESIGN, 2003, 69 (1-4) : 803 - 806
  • [28] REP-rated target injection for inertial fusion energy
    Frey, DT
    Goodin, DT
    Stemke, RW
    Petzoldt, RW
    Drake, TJ
    Egli, W
    Vermillion, BA
    Klasen, R
    Cleary, MM
    FUSION SCIENCE AND TECHNOLOGY, 2005, 47 (04) : 1143 - 1146
  • [29] A cost-effective target supply for inertial fusion energy
    Goodin, DT
    Alexander, NB
    Brown, LC
    Frey, DT
    Gallix, R
    Gibson, CR
    Maxwell, JL
    Nobile, A
    Olson, C
    Petzoldt, RW
    Raffray, R
    Rochau, G
    Schroen, DG
    Tillack, M
    Rickman, WS
    Vermillion, B
    NUCLEAR FUSION, 2004, 44 (12) : S254 - S265
  • [30] Status of target injection and tracking studies for inertial fusion energy
    Petzoldt, RW
    Goodin, D
    Siegel, N
    FUSION TECHNOLOGY, 2000, 38 (01): : 22 - 27