Asymptotic Radial Solution of Parabolic Tempered Fractional Laplacian Problem

被引:5
|
作者
Wang, Guotao [1 ]
Liu, Yuchuan [1 ]
Nieto, Juan J. [2 ]
Zhang, Lihong [1 ]
机构
[1] Shanxi Normal Univ, Sch Math & Comp Sci, Taiyuan 030031, Peoples R China
[2] Univ Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, Santiago 15782, Spain
关键词
Fractional parabolic equation; Logarithmic nonlinearity; Asymptotic maximum principle; Tempered fractional Laplacian; Asymptotic symmetry and monotonicity; SYMMETRY;
D O I
10.1007/s40840-022-01394-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study parabolic equation with the tempered fractional Laplacian and logarithmic nonlinearity by the direct method of moving planes. We first prove several important theorems, such as asymptotic maximum principle, asymptotic narrow region principle and asymptotic strong maximum principle for antisymmetric functions, which are critical factors in the process of moving planes. Then, we further derive some properties of asymptotic radial solution to parabolic equation with the tempered fractional Laplacian and logarithmic nonlinearity in a unit ball. These consequences can be applied to investigate more nonlinear nonlocal parabolic equations.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Asymptotic Radial Solution of Parabolic Tempered Fractional Laplacian Problem
    Guotao Wang
    Yuchuan Liu
    Juan J. Nieto
    Lihong Zhang
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [2] A solution to parabolic system with the fractional Laplacian
    FANG Lin FANG Daoyuan Dept of MathZhejiang UnivHangzhou China
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2009, 24 (02) : 184 - 190
  • [3] A solution to parabolic system with the fractional Laplacian
    FANG Lin FANG Dao-yuan Dept. of Math.
    Applied Mathematics:A Journal of Chinese Universities, 2009, (02) : 184 - 190
  • [4] A solution to parabolic system with the fractional Laplacian
    Fang Lin
    Fang Dao-yuan
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2009, 24 (02) : 184 - 190
  • [5] A solution to parabolic system with the fractional Laplacian
    Lin Fang
    Dao-yuan Fang
    Applied Mathematics-A Journal of Chinese Universities, 2009, 24 : 184 - 190
  • [6] Sliding methods for tempered fractional parabolic problem
    Peng, Shaolong
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024, 76 (04): : 1358 - 1378
  • [7] Doob's ω-transform of parabolic problem for fractional Laplacian
    Bezzarga, Mounir
    Kenzizi, Tarek
    Nefzi, Chaima
    APPLICABLE ANALYSIS, 2023, 102 (03) : 770 - 781
  • [8] Radial symmetry of positive solutions for a tempered fractional p-Laplacian system
    Chen, Xueying
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (06) : 3352 - 3373
  • [9] On fractional p-Laplacian parabolic problem with general data
    B. Abdellaoui
    A. Attar
    R. Bentifour
    I. Peral
    Annali di Matematica Pura ed Applicata (1923 -), 2018, 197 : 329 - 356
  • [10] On fractional p-Laplacian parabolic problem with general data
    Abdellaoui, B.
    Attar, A.
    Bentifour, R.
    Peral, I.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (02) : 329 - 356