On fractional p-Laplacian parabolic problem with general data

被引:0
|
作者
B. Abdellaoui
A. Attar
R. Bentifour
I. Peral
机构
[1] Université Abou Bakr Belkaïd,Laboratoire d’Analyse Nonlinéaire et Mathématiques Appliquées, Département de Mathématiques
[2] U. Autonoma de Madrid,Departamento de Matemáticas
关键词
Nonlinear nonlocal parabolic problems; Entropy solution; Finite time extinction; Speed of propagation; 35K59; 35K65; 35K92; 35B09; 60J75;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, the problem to be studied is the following (P)ut+(-Δps)u=f(x,t)inΩT≡Ω×(0,T),u=0in(RN\Ω)×(0,T),u(x,0)=u(x)inΩ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (P) \left\{ \begin{array}{llll} u_t+(-\Delta ^s_{p}) u = f(x,t) &{}\quad \text { in } \Omega _{T}\equiv \Omega \times (0,T), \\ u = 0 &{}\quad \text { in }({\mathbb {R}}^N{\setminus }\Omega ) \times (0,T), \\ u(x,0) = u(x) &{}\quad \text{ in } \Omega , \end{array} \right. \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded domain and (-Δps)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta ^s_{p})$$\end{document} is the fractional p-Laplacian operator defined by (-Δps)u(x,t):=P.V∫RN|u(x,t)-u(y,t)|p-2(u(x,t)-u(y,t))|x-y|N+psdy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta ^s_{p})\, u(x,t):=P.V\int _{{\mathbb {R}}^N} \,\dfrac{|u(x,t)-u(y,t)|^{p-2}(u(x,t)-u(y,t))}{|x-y|^{N+ps}} \,\mathrm{d}y \end{aligned}$$\end{document}with 1<p<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<N$$\end{document}, s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in (0,1)$$\end{document} and f,u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f, u_0$$\end{document} being measurable functions. The main goal of this work is to prove that if (f,u0)∈L1(ΩT)×L1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(f,u_0)\in L^1(\Omega _T)\times L^1(\Omega )$$\end{document}, problem (P) has a weak solution with suitable regularity. In addition, if f0,u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_0, u_0$$\end{document} are nonnegative, we show that the problem above has a nonnegative entropy solution. In the case of nonnegative data, we give also some quantitative and qualitative properties of the solution according the values of p.
引用
收藏
页码:329 / 356
页数:27
相关论文
共 50 条
  • [1] On fractional p-Laplacian parabolic problem with general data
    Abdellaoui, B.
    Attar, A.
    Bentifour, R.
    Peral, I.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (02) : 329 - 356
  • [2] The parabolic p-Laplacian with fractional differentiability
    Breit, Dominic
    Diening, Lars
    Storn, Johannes
    Wichmann, Joern
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (03) : 2110 - 2138
  • [4] Hölder regularity for parabolic fractional p-Laplacian
    Naian Liao
    [J]. Calculus of Variations and Partial Differential Equations, 2024, 63
  • [5] On a Fractional p-Laplacian Problem with Discontinuous Nonlinearities
    Hanaâ Achour
    Sabri Bensid
    [J]. Mediterranean Journal of Mathematics, 2021, 18
  • [6] The Brezis–Nirenberg problem for the fractional p-Laplacian
    Sunra Mosconi
    Kanishka Perera
    Marco Squassina
    Yang Yang
    [J]. Calculus of Variations and Partial Differential Equations, 2016, 55
  • [7] The Obstacle Problem at Zero for the Fractional p-Laplacian
    Silvia Frassu
    Eugénio M. Rocha
    Vasile Staicu
    [J]. Set-Valued and Variational Analysis, 2022, 30 : 207 - 231
  • [8] On a Fractional p-Laplacian Problem with Discontinuous Nonlinearities
    Achour, Hanaa
    Bensid, Sabri
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (06)
  • [9] Three solutions for a fractional p-Laplacian problem
    Weiqiang Zhang
    Jiabin Zuo
    Peihao Zhao
    [J]. Journal of Pseudo-Differential Operators and Applications, 2022, 13
  • [10] Three solutions for a fractional p-Laplacian problem
    Zhang, Weiqiang
    Zuo, Jiabin
    Zhao, Peihao
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2022, 13 (04)