Hölder regularity for parabolic fractional p-Laplacian

被引:0
|
作者
Naian Liao
机构
[1] Paris-Lodron-Universität Salzburg,Fachbereich Mathematik
关键词
35R11; 35K65; 35B65; 47G20;
D O I
暂无
中图分类号
学科分类号
摘要
Local Hölder regularity is established for certain weak solutions to a class of parabolic fractional p-Laplace equations with merely measurable kernels. The proof uses DeGiorgi’s iteration and refines DiBenedetto’s intrinsic scaling method. The control of a nonlocal integral of solutions in the reduction of oscillation plays a crucial role and entails delicate analysis in this intrinsic scaling scenario. Dispensing with any logarithmic estimate and any comparison principle, the proof is new even for the linear case.
引用
收藏
相关论文
共 50 条
  • [1] Holder regularity for parabolic fractional p-Laplacian
    Liao, Naian
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (01)
  • [2] Parabolic p-Laplacian revisited: Global regularity and fractional smoothness
    de Miranda, Luis H.
    Planas, Gabriela
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (01)
  • [3] Local Hölder regularity of gradients for evolutional p-Laplacian systems
    Masashi Misawa
    [J]. Annali di Matematica Pura ed Applicata, 2002, 181 : 389 - 405
  • [4] Hölder regularity for the general parabolic p(x, t)-Laplacian equations
    Fengping Yao
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2015, 22 : 105 - 119
  • [5] The parabolic p-Laplacian with fractional differentiability
    Breit, Dominic
    Diening, Lars
    Storn, Johannes
    Wichmann, Joern
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (03) : 2110 - 2138
  • [6] Global Holder regularity for the fractional p-Laplacian
    Iannizzotto, Antonio
    Mosconi, Sunra
    Squassina, Marco
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (04) : 1353 - 1392
  • [7] REGULARITY OF NONNEGATIVE SOLUTIONS OF THE P-LAPLACIAN PARABOLIC EQUATION
    ESTEBAN, JR
    VAZQUEZ, JL
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (03): : 105 - 110
  • [8] Fine boundary regularity for the singular fractional p-Laplacian
    Iannizzotto, A.
    Mosconi, S.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 412 : 322 - 379
  • [9] Fine boundary regularity for the degenerate fractional p-Laplacian
    Iannizzotto, Antonio
    Mosconi, Sunra J. N.
    Squassina, Marco
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (08)
  • [10] Holder regularity for the gradient of the inhomogeneous parabolic normalized p-Laplacian
    Attouchi, Amal
    Parviainen, Mikko
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (04)