Asymptotic Radial Solution of Parabolic Tempered Fractional Laplacian Problem

被引:5
|
作者
Wang, Guotao [1 ]
Liu, Yuchuan [1 ]
Nieto, Juan J. [2 ]
Zhang, Lihong [1 ]
机构
[1] Shanxi Normal Univ, Sch Math & Comp Sci, Taiyuan 030031, Peoples R China
[2] Univ Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, Santiago 15782, Spain
关键词
Fractional parabolic equation; Logarithmic nonlinearity; Asymptotic maximum principle; Tempered fractional Laplacian; Asymptotic symmetry and monotonicity; SYMMETRY;
D O I
10.1007/s40840-022-01394-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study parabolic equation with the tempered fractional Laplacian and logarithmic nonlinearity by the direct method of moving planes. We first prove several important theorems, such as asymptotic maximum principle, asymptotic narrow region principle and asymptotic strong maximum principle for antisymmetric functions, which are critical factors in the process of moving planes. Then, we further derive some properties of asymptotic radial solution to parabolic equation with the tempered fractional Laplacian and logarithmic nonlinearity in a unit ball. These consequences can be applied to investigate more nonlinear nonlocal parabolic equations.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Asymptotic Behavior of Least Energy Solutions for a Fractional Laplacian Eigenvalue Problem on RN
    Yun Bo WANG
    Xiao Yu ZENG
    Huan Song ZHOU
    Acta Mathematica Sinica,English Series, 2023, (04) : 707 - 727
  • [32] On asymptotic expansions for the fractional infinity Laplacian
    del Teso, Felix
    Endal, Jorgen
    Lewicka, Marta
    ASYMPTOTIC ANALYSIS, 2022, 127 (03) : 201 - 216
  • [33] RADIAL SYMMETRY FOR SYSTEMS OF FRACTIONAL LAPLACIAN
    李从明
    吴志刚
    Acta Mathematica Scientia, 2018, 38 (05) : 1567 - 1582
  • [34] Existence of the second positive radial solution for a p-Laplacian problem
    Kim, Chan-Gyun
    Lee, Eun Kyoung
    Lee, Yong-Hoon
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (13) : 3743 - 3750
  • [35] Multiple scales asymptotic solution for the constant radial thrust problem
    Gonzalo, Juan Luis
    Bombardelli, Claudio
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2019, 131 (08):
  • [36] RADIAL SYMMETRY FOR SYSTEMS OF FRACTIONAL LAPLACIAN
    Li, Congming
    Wu, Zhigang
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (05) : 1567 - 1582
  • [37] Uniqueness of Radial Solutions for the Fractional Laplacian
    Frank, Rupert L.
    Lenzmann, Enno
    Silvestre, Luis
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (09) : 1671 - 1726
  • [38] Multiple scales asymptotic solution for the constant radial thrust problem
    Juan Luis Gonzalo
    Claudio Bombardelli
    Celestial Mechanics and Dynamical Astronomy, 2019, 131
  • [39] The Dirichlet problem with tempered fractional derivatives
    Torres Ledesma, Cesar E.
    Nyamoradi, Nemat
    Bonilla, Manuel M.
    Rodriguez, Jesus A.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2025, 74 (01)
  • [40] Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian
    Luis A. Caffarelli
    Sandro Salsa
    Luis Silvestre
    Inventiones mathematicae, 2008, 171 : 425 - 461