Triangular Numerical Semigroups

被引:0
|
作者
Neto, Ana Margarida [1 ,2 ]
Iglesias, Laura [2 ,3 ]
机构
[1] Univ Lisbon, Inst Super Econ & Gestao, Rua Quelhas 6, P-1200781 Lisbon, Portugal
[2] Univ Lisbon, Ctr Analise Func Estruturas Lineares & Aplicacoes, Av Prof Gama Pinto 2, P-1649003 Lisbon, Portugal
[3] Inst Super Engn Lisboa ISEL, Area Dept Matemat, P-1949014 Lisbon, Portugal
来源
关键词
Numerical semigroup; Embedding dimension; Triangular number; FROBENIUS PROBLEM;
D O I
10.1007/s13226-022-00339-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define triangular numerical semigroup as the numerical semigroups generated by all the triangular numbers greater than or equal to a given triangular number and we study the minimal set of generators and the embedding dimension of these numerical semigroups.
引用
收藏
页码:1262 / 1267
页数:6
相关论文
共 50 条
  • [41] REALIZING NUMERICAL SEMIGROUPS AS WEIERSTRASS SEMIGROUPS: A COMPUTATIONAL APPROACH
    Pimentel, Francisco L. R.
    Oliveira, Gilvan
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2006, 6 (03): : 445 - 454
  • [42] Equational theories of upper triangular tropical matrix semigroups
    Bin Bin Han
    Wen Ting Zhang
    Yan Feng Luo
    Algebra universalis, 2021, 82
  • [43] The pseudovariety of semigroups of triangular matrices over a finite field
    Almeida, J
    Margolis, SW
    Volkov, MV
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2005, 39 (01): : 31 - 48
  • [44] Equational theories of upper triangular tropical matrix semigroups
    Han, Bin Bin
    Zhang, Wen Ting
    Luo, Yan Feng
    ALGEBRA UNIVERSALIS, 2021, 82 (03)
  • [45] Identities of Semigroups of Triangular Matrices over Finite Fields
    M. V. Volkov
    I. A. Gol'dberg
    Mathematical Notes, 2003, 73 : 474 - 481
  • [46] Identities of semigroups of triangular matrices over finite fields
    Volkov, MV
    Gol'dberg, IA
    MATHEMATICAL NOTES, 2003, 73 (3-4) : 474 - 481
  • [47] ON NUMERICAL RANGES AND HOLOMORPHIC SEMIGROUPS
    STRANG, G
    JOURNAL D ANALYSE MATHEMATIQUE, 1969, 22 : 299 - &
  • [48] Numerical semigroups and Kunz polytopes
    Elie Alhajjar
    Travis Russell
    Michael Steward
    Semigroup Forum, 2019, 99 : 153 - 168
  • [49] Fundamental gaps in numerical semigroups
    Rosales, JC
    García-Sánchez, PA
    García-García, JI
    Madrid, JAJ
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 189 (1-3) : 301 - 313
  • [50] On isolated gaps in numerical semigroups
    Smith, Harold J.
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (01) : 123 - 129