Proton-Conducting Membranes from Polyphenylenes Containing Armstrong's Acid

被引:0
|
作者
Kuenzel-Tenner, Andy [1 ]
Kirsch, Christoph [2 ]
Dolynchuk, Oleksandr [3 ]
Roessner, Leonard [4 ]
Wach, Maxime [5 ]
Kempe, Fabian [1 ]
von Unwerth, Thomas [5 ]
Lederer, Albena [6 ,7 ]
Sebastiani, Daniel [2 ]
Armbruester, Marc [4 ]
Sommer, Michael [1 ,8 ]
机构
[1] Inst fur Chem, Polymerchemie, Tech Univ Chemnitz, D-09111 Chemnitz, Germany
[2] Martin Luther Univ Halle Wittenberg, Inst Chem, Theoret Chem, D-06120 Halle, Germany
[3] Martin Luther Univ Halle Wittenberg, Expt Polymer Phys, D-06120 Halle, Germany
[4] Inst fur Chem, Inst Chem, Mat Innovat Energiekonzepte, D-09111 Chemnitz, Germany
[5] Inst fur Automobilforschung, Inst Automobilforsch, D-09126 Chemnitz, Germany
[6] Leibniz Inst Polymerforsch Dresden eV, D-01069 Dresden, Germany
[7] Stellenbosch Univ, Dept Chem & Polymer Sci, ZA-7602 Matieland, South Africa
[8] Forschungszentrum Julich MAIN, TU Chemnitz, D-09126 Chemnitz, Germany
关键词
POLY(ETHER ETHER KETONE); FUEL-CELL; EXCHANGE MEMBRANE; CROSS-LINKING; POLYMER; DEGRADATION; SULFONATION; MECHANISM;
D O I
10.1021/acs.macromol.3c02123
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This study demonstrates the use of 1,5-naphthalenedisulfonic acid as a suitable building block for the efficient and economic preparation of alternating sulfonated polyphenylenes with high ion-exchange capacity (IEC) via Suzuki polycondensation. Key to large molar masses is the use of an all-meta-terphenyl comonomer instead of m-phenyl, the latter giving low molar masses and brittle materials. A protection/deprotection strategy for base-stable neopentyl sulfonates is successfully implemented to improve the solubility and molar mass of the polymers. Solution-based deprotection of polyphenylene neopentyl sulfonates at 150 C-degrees in dimethylacetamide eliminates isopentylene quantitatively, resulting in membranes with high IEC (2.93 mequiv/g) and high proton conductivity (sigma = 138 mS/cm). Water solubility of these copolymers with high IEC requires thermal cross-linking to prevent their dissolution under operating conditions. By balancing the temperature and time of the cross-linking process, water uptake can be restricted to 50 wt %, retaining an IEC of 2.33 mequiv/g and a conductivity of 85 mS/cm. Chemical stability is addressed by treatment of the membranes under Fenton's conditions and by considering barrier heights for desulfonation using density functional theory (DFT) calculations. The DFT results suggest that 1,5-disulfonated naphthalenes are at least as stable as sulfonated polyphenylenes against desulfonation.
引用
收藏
页码:1238 / 1247
页数:10
相关论文
共 50 条
  • [1] SAXS/WAXS characterization of proton-conducting polymer membranes containing phosphomolybdic acid
    Prado, LASA
    Ponce, ML
    Funari, SS
    Schulte, K
    Garamus, VM
    Willumeit, R
    Nunes, SP
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2005, 351 (27-29) : 2194 - 2199
  • [2] Acid functionalized poly(arylene ether)s for proton-conducting membranes
    Shin, CK
    Maier, G
    Scherer, GG
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2004, 245 (1-2) : 163 - 173
  • [3] Proton-conducting hydrogel membranes
    Przyluski, J
    Poltarzewski, Z
    Wieczorek, W
    [J]. POLYMER, 1998, 39 (18) : 4343 - 4347
  • [4] Silicotungstic acid/organically modified silane proton-conducting membranes
    U. Lavrenčič Štangar
    B. Orel
    J. Vince
    V. Jovanovski
    H. Spreizer
    A. Šurca Vuk
    S. Hočevar
    [J]. Journal of Solid State Electrochemistry, 2005, 9 : 106 - 113
  • [5] Proton-Conducting Polymers and Membranes Carrying Phosphonic Acid Groups
    Rusanov, Alexandre L.
    Kostoglodov, Petr V.
    Abadie, Marc J. M.
    Voytekunas, Vanda Yu.
    Likhachev, Dmitri Yu.
    [J]. FUEL CELLS II, 2008, 216 : 125 - 155
  • [6] Silicotungstic acid/organically modified silane proton-conducting membranes
    Stangar, UL
    Orel, B
    Vince, J
    Jovanovski, V
    Spreizer, H
    Vuk, AS
    Hocevar, S
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2005, 9 (02) : 106 - 113
  • [7] Proton-conducting methacrylate-silica sol-gel membranes containing tungstophosphoric acid
    Aparicio, M
    Mosa, J
    Etienne, A
    Durán, A
    [J]. JOURNAL OF POWER SOURCES, 2005, 145 (02) : 231 - 236
  • [8] Composite proton-conducting membranes with nanodiamonds
    Kulvelis, Yu. V.
    Primachenko, O. N.
    Odinokov, A. S.
    Shvidchenko, A. V.
    Bayramukov, V. Yu.
    Gofman, I. V.
    Lebedev, V. T.
    Ivanchev, S. S.
    Vul, A. Ya.
    Kuklin, A. I.
    Wu, B.
    [J]. FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2020, 28 (02) : 140 - 146
  • [9] Highly Stable, Low Gas Crossover, Proton-Conducting Phenylated Polyphenylenes
    Adamski, Michael
    Skalski, Thomas J. G.
    Britton, Benjamin
    Peckham, Timothy J.
    Metzler, Lukas
    Holdcroft, Steven
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (31) : 9058 - 9061
  • [10] Composite proton-conducting membranes for PEMFCs
    Mustarelli, P.
    Carollo, A.
    Grandi, S.
    Quartarone, E.
    Tomasi, C.
    Leonardi, S.
    Magistris, A.
    [J]. FUEL CELLS, 2007, 7 (06) : 441 - 446