Proton-Conducting Membranes from Polyphenylenes Containing Armstrong's Acid

被引:0
|
作者
Kuenzel-Tenner, Andy [1 ]
Kirsch, Christoph [2 ]
Dolynchuk, Oleksandr [3 ]
Roessner, Leonard [4 ]
Wach, Maxime [5 ]
Kempe, Fabian [1 ]
von Unwerth, Thomas [5 ]
Lederer, Albena [6 ,7 ]
Sebastiani, Daniel [2 ]
Armbruester, Marc [4 ]
Sommer, Michael [1 ,8 ]
机构
[1] Inst fur Chem, Polymerchemie, Tech Univ Chemnitz, D-09111 Chemnitz, Germany
[2] Martin Luther Univ Halle Wittenberg, Inst Chem, Theoret Chem, D-06120 Halle, Germany
[3] Martin Luther Univ Halle Wittenberg, Expt Polymer Phys, D-06120 Halle, Germany
[4] Inst fur Chem, Inst Chem, Mat Innovat Energiekonzepte, D-09111 Chemnitz, Germany
[5] Inst fur Automobilforschung, Inst Automobilforsch, D-09126 Chemnitz, Germany
[6] Leibniz Inst Polymerforsch Dresden eV, D-01069 Dresden, Germany
[7] Stellenbosch Univ, Dept Chem & Polymer Sci, ZA-7602 Matieland, South Africa
[8] Forschungszentrum Julich MAIN, TU Chemnitz, D-09126 Chemnitz, Germany
关键词
POLY(ETHER ETHER KETONE); FUEL-CELL; EXCHANGE MEMBRANE; CROSS-LINKING; POLYMER; DEGRADATION; SULFONATION; MECHANISM;
D O I
10.1021/acs.macromol.3c02123
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This study demonstrates the use of 1,5-naphthalenedisulfonic acid as a suitable building block for the efficient and economic preparation of alternating sulfonated polyphenylenes with high ion-exchange capacity (IEC) via Suzuki polycondensation. Key to large molar masses is the use of an all-meta-terphenyl comonomer instead of m-phenyl, the latter giving low molar masses and brittle materials. A protection/deprotection strategy for base-stable neopentyl sulfonates is successfully implemented to improve the solubility and molar mass of the polymers. Solution-based deprotection of polyphenylene neopentyl sulfonates at 150 C-degrees in dimethylacetamide eliminates isopentylene quantitatively, resulting in membranes with high IEC (2.93 mequiv/g) and high proton conductivity (sigma = 138 mS/cm). Water solubility of these copolymers with high IEC requires thermal cross-linking to prevent their dissolution under operating conditions. By balancing the temperature and time of the cross-linking process, water uptake can be restricted to 50 wt %, retaining an IEC of 2.33 mequiv/g and a conductivity of 85 mS/cm. Chemical stability is addressed by treatment of the membranes under Fenton's conditions and by considering barrier heights for desulfonation using density functional theory (DFT) calculations. The DFT results suggest that 1,5-disulfonated naphthalenes are at least as stable as sulfonated polyphenylenes against desulfonation.
引用
收藏
页码:1238 / 1247
页数:10
相关论文
共 50 条
  • [31] PROTON-CONDUCTING MEMBRANES ON THE BASE OF POLYNAPHTHALENE IMIDOSULFONIC ACIDS
    SOLOMIN, VA
    LYAKH, YN
    ZHUBANOV, BA
    [J]. VYSOKOMOLEKULYARNYE SOEDINENIYA SERIYA A, 1992, 34 (03): : 139 - 142
  • [32] Proton-conducting membranes for PEM fuel cells Preface
    Di Vona, M. L.
    Knauth, P.
    Alberti, G.
    [J]. JOURNAL OF POWER SOURCES, 2010, 195 (23) : 7719 - 7719
  • [33] Sulfophenylation of polysulfones for proton-conducting fuel cell membranes
    Lafitte, B
    Karlsson, LE
    Jannasch, P
    [J]. MACROMOLECULAR RAPID COMMUNICATIONS, 2002, 23 (15) : 896 - 900
  • [34] High proton-conducting monolithic phosphosilicate glass membranes
    Li, Haibin
    Jin, Dongliang
    Kong, Xiangyang
    Tu, Hengyong
    Yu, Qingchun
    Jiang, Fengjing
    [J]. MICROPOROUS AND MESOPOROUS MATERIALS, 2011, 138 (1-3) : 63 - 67
  • [35] Evaluation of methanol crossover in proton-conducting polyphosphazene membranes
    Fedkin, MV
    Zhou, XY
    Hofmann, MA
    Chalkova, E
    Weston, JA
    Allcock, HR
    Lvov, SN
    [J]. MATERIALS LETTERS, 2002, 52 (03) : 192 - 196
  • [36] Novel proton-conducting nanocomposites for hydrogen separation membranes
    Sadykov, V. A.
    Bespalko, Yu. N.
    Krasnov, A. V.
    Skriabin, P. I.
    Lukashevich, A. I.
    Fedorova, Yu. E.
    Sadovskaya, E. M.
    Eremeev, N. F.
    Krieger, T. A.
    Ishchenko, A. V.
    Belyaev, V. D.
    Uvarov, N. F.
    Ulihin, A. S.
    Skovorodin, I. N.
    [J]. SOLID STATE IONICS, 2018, 322 : 69 - 78
  • [37] Sulfonated polynaphthylimides as proton-conducting membranes for fuel cells
    Rusanov, A. L.
    Bulycheva, E. G.
    Bugaenko, M. G.
    Voytekunas, V. Yu
    Abadie, M. J. M.
    [J]. RUSSIAN CHEMICAL REVIEWS, 2009, 78 (01) : 53 - 75
  • [38] PROTON-CONDUCTING MEMBRANES BASED ON MODIFIED POLYVINYLIDENE CHLORIDE
    Badanov, S. V.
    Urumov, A. V.
    Shaglaeva, N. S.
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 2023, 66 (03): : 85 - 92
  • [39] Nanostructured proton-conducting membranes for fuel cell applications
    Tan, AR
    de Carvalho, LM
    Gomes, AD
    [J]. MACROMOLECULAR SYMPOSIA, 2005, 229 : 168 - 178
  • [40] Proton-conducting blend membranes of Nafion/poly(vinylphosphonic acid) for proton exchange membrane fuel cells
    Sen, Unal
    Acar, Oktay
    Celik, Sevim Unugur
    Bozkurt, Ayhan
    Ata, Ali
    Tokumasu, Takashi
    Miyamoto, Akira
    [J]. JOURNAL OF POLYMER RESEARCH, 2013, 20 (09)