Interfacial-Layer-Free Ge0.95Si0.05 Nanosheet FeFETs

被引:1
|
作者
Hsieh, Wan-Hsuan [1 ]
Chen, Yu-Rui [1 ]
Liu, Yi-Chun [1 ]
Zhao, Zefu [1 ]
Lee, Jia-Yang [2 ]
Tu, Chien-Te [1 ]
Huang, Bo-Wei [1 ]
Wang, Jer-Fu [1 ]
Lee, M. H. [3 ]
Liu, C. W. [4 ,5 ]
机构
[1] Natl Taiwan Univ, Grad Inst Elect Engn, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Grad Sch Adv Tech nol, Inst & Undergrad Program Electroopt Engn, Taipei 10617, Taiwan
[3] Natl Taiwan Univ, Grad Sch Adv Technol, Taipei 10617, Taiwan
[4] Natl Taiwan Univ, Grad Inst Elect Engn, Grad Inst Photon & Optoelect, Dept Elect Engn, Taipei 10617, Taiwan
[5] Natl Taiwan Univ, Grad Sch Adv Technol, Taipei 10617, Taiwan
关键词
Germanium silicon alloys; Germanium; Gallium arsenide; FeFETs; Tin; Iron; Superlattices; Chemical vapor deposition; ferroelectric field-effect transistor (FeFET); gate-all-around (GAA); GeSi; interfacial layer; isotropic wet etching; nanosheets (NSs); FIELD-EFFECT TRANSISTOR; FERROELECTRIC FET; ENDURANCE; EPITAXY;
D O I
10.1109/TED.2024.3356444
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The substantial memory window (MW) of 1.8 V is achieved by utilizing stacked two nanosheet (NS) gate-all-around (GAA) Ge0.95 Si0.05 ferroelectric field-effect transistors (FeFETs), employing a low write voltage of 2 V. The channel phosphorus concentration similar to 1E18 cm(-3) is used to erase the absence of interfacial layer (IL) can reduce the operation voltage. An isotropic wet etching process is employed for channel release. The stacked two NSs offer the advantages of reducing cell-to-cell variation and doubling the read current. Additionally, the stability of data storage is demonstrated with the data retention of > 1E4 s, linearly extrapolated to a span of 10 years, and exhibiting high endurance >1E11 cycles. The thermal budget is as low as 400 degree celsius.
引用
收藏
页码:1758 / 1763
页数:6
相关论文
共 50 条
  • [21] PHOTOLUMINESCENCE FROM EPITAXIAL SI/SI0.95GE0.05 HETEROSTRUCTURES AS PROBED BY OPTICALLY-ACTIVE DEEP LEVELS
    NORTHROP, GA
    WOLFORD, DJ
    IYER, SS
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1991, 9 (04): : 2388 - 2393
  • [22] Ge0.05Si0.95/Si脊形光波导的光场分析及设计
    李国正
    刘淑平
    固体电子学研究与进展, 1998, (01) : 59 - 63
  • [23] Interfacial layer in La0.95Tb0.05MnO3/Nb-SrTiO 3 heterojunction
    Zhang, Y. T.
    Wang, C. C.
    Feng, X. M.
    He, M.
    Lu, H. B.
    SOLID STATE COMMUNICATIONS, 2009, 149 (45-46) : 2065 - 2069
  • [24] Ge0.05Si0.95/Si异质结平面光波导中的光场分析
    刘淑平
    李国正
    刘恩科
    计算物理, 1996, (03) : 101 - 104
  • [25] Thermal Immune Ni Germanide for High Performance Ge MOSFETs on Ge-on-Si Substrate Utilizing Ni0.95Pd0.05 Alloy
    Zhang, Ying-Ying
    Oh, Jungwoo
    Han, In-Shik
    Zhong, Zhun
    Li, Shi-Guang
    Jung, Soon-Yen
    Park, Kee-Young
    Shin, Hong-Sik
    Choi, Won-Ho
    Kwon, Hyuk-Min
    Loh, Wei-Yip
    Majhi, Prashant
    Jammy, Raj
    Lee, Hi-Deok
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2009, 56 (02) : 348 - 353
  • [26] P-Ge0.05Si0.95/P-Si异质结的I-V特性和光响应
    李国正
    刘淑萍
    固体电子学研究与进展, 1997, (01) : 26 - 29
  • [27] Optical characterization of highly n-type doped Ge0.95Sn0.05 rod antennas on Si(001) substrates
    Berkmann, F.
    Augel, L.
    Schilling, M. B.
    Berrier, A.
    Schwarz, D.
    Weisshaupt, D.
    Oehme, M.
    Schulze, J.
    Fischer, I. A.
    2018 41ST INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2018, : 32 - 35
  • [28] Thermoelectric properties of Sb-doped Mg2(Si0.95Ge0.05) synthesized by spark plasma sintering
    Arai, Koya
    Sasaki, Asumi
    Kimori, Yuto
    Iida, Miharu
    Nakamura, Tomoyuki
    Yamaguchi, Yuki
    Fujimoto, Kenjiro
    Tamura, Ryuji
    Iida, Tsutomu
    Nishio, Keishi
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2015, 195 : 45 - 49
  • [29] Ge0.05Si0.95/Si异质结单模共面布拉格反射波导光栅的设计与分析
    徐勤昌
    刘淑平
    郭云香
    应用光学, 2008, (05) : 763 - 766
  • [30] Barrier inhomogeneities in titanium Schottky contacts formed on argon plasma etched p-type Si0.95Ge0.05
    M. Mamor
    K. Bouziane
    A. Tirbiyine
    Journal of Materials Science: Materials in Electronics, 2014, 25 : 1527 - 1533