Differentiating subcentimeter lung metastases in colorectal cancer patients by radiomics and deep learning approaches: A multicenter study

被引:0
|
作者
Gao, X. [1 ]
Ma, D. [2 ]
机构
[1] Zhejiang Canc Hosp, Dept Radiol, Hangzhou, Peoples R China
[2] Zhejiang Canc Hosp, Hangzhou, Peoples R China
关键词
D O I
10.1016/j.annonc.2023.04.387
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
P-331
引用
收藏
页码:S130 / S131
页数:2
相关论文
共 50 条
  • [31] Diagnosis Approaches for Colorectal Cancer Using Manifold Learning and Deep Learning
    Thanh-Hai N.
    Thai-Nghe N.
    SN Computer Science, 2020, 1 (5)
  • [32] Deep Learning for Automated Segmentation of Liver Lesions at CT in Patients with Colorectal Cancer Liver Metastases
    Vorontsov, Eugene
    Cerny, Milena
    Regnier, Philippe
    Di Jorio, Lisa
    Pal, Christopher J.
    Lapointe, Real
    Vandenbroucke-Menu, Franck
    Turcotte, Simon
    Kadoury, Samuel
    Tang, An
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2019, 1 (02)
  • [33] Spectral CT based radiomics for predicting brain metastases in patients with lung cancer
    Cao, S.
    Shu, Z.
    INTERNATIONAL JOURNAL OF RADIATION RESEARCH, 2024, 22 (02):
  • [34] Deep learning-enhanced radiomics for histologic classification and grade stratification of stage IA lung adenocarcinoma: a multicenter study
    Pei, Guotian
    Wang, Dawei
    Sun, Kunkun
    Yang, Yingshun
    Tang, Wen
    Sun, Yanfeng
    Yin, Siyuan
    Liu, Qiang
    Wang, Shuai
    Huang, Yuqing
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [35] CT-based deep learning radiomics nomogram for the prediction of pathological grade in bladder cancer: a multicenter study
    Song, Hongzheng
    Yang, Shifeng
    Yu, Boyang
    Li, Na
    Huang, Yonghua
    Sun, Rui
    Wang, Bo
    Nie, Pei
    Hou, Feng
    Huang, Chencui
    Zhang, Meng
    Wang, Hexiang
    CANCER IMAGING, 2023, 23 (01)
  • [36] CT-based deep learning radiomics nomogram for the prediction of pathological grade in bladder cancer: a multicenter study
    Hongzheng Song
    Shifeng Yang
    Boyang Yu
    Na Li
    Yonghua Huang
    Rui Sun
    Bo Wang
    Pei Nie
    Feng Hou
    Chencui Huang
    Meng Zhang
    Hexiang Wang
    Cancer Imaging, 23
  • [37] Radiogenomics analysis of PET/CT images in lung cancer patients: Conventional radiomics versus deep learning
    Shiri, I.
    Hajianfar, G.
    Ashrafinia, S.
    Jenabi, E.
    Oveisi, M.
    Rahmim, A.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (SUPPL 1) : S152 - S152
  • [38] Deep Learning Approach for Differentiating Etiologies of Pediatric Retinal Hemorrhages: A Multicenter Study
    Khosravi, Pooya
    Huck, Nolan A.
    Shahraki, Kourosh
    Hunter, Stephen C.
    Danza, Clifford Neil
    Kim, So Young
    Forbes, Brian J.
    Dai, Shuan
    Levin, Alex V.
    Binenbaum, Gil
    Chang, Peter D.
    Suh, Donny W.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (20)
  • [39] Deep radiomics-based fusion model for prediction of bevacizumab treatment response and outcome in patients with colorectal cancer liver metastases: a multicentre cohort study
    Zhou, Shizhao
    Sun, Dazhen
    Mao, Wujian
    Liu, Yu
    Cen, Wei
    Ye, Lechi
    Liang, Fei
    Xu, Jianmin
    Shi, Hongcheng
    Ji, Yuan
    Wang, Lisheng
    Chang, Wenju
    ECLINICALMEDICINE, 2023, 65
  • [40] Radiomics approaches for predicting non-iodine-avid status of lung metastases in patients with differentiated thyroid cancer based on CT: a prospective observational study
    Gao, X.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2023, 50 (SUPPL 1) : S238 - S238