Differentiating subcentimeter lung metastases in colorectal cancer patients by radiomics and deep learning approaches: A multicenter study

被引:0
|
作者
Gao, X. [1 ]
Ma, D. [2 ]
机构
[1] Zhejiang Canc Hosp, Dept Radiol, Hangzhou, Peoples R China
[2] Zhejiang Canc Hosp, Hangzhou, Peoples R China
关键词
D O I
10.1016/j.annonc.2023.04.387
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
P-331
引用
收藏
页码:S130 / S131
页数:2
相关论文
共 50 条
  • [21] Differentiating the pathological subtypes of primary lung cancer for patients with brain metastases based on radiomics features from brain CT images
    Ji Zhang
    Juebin Jin
    Yao Ai
    Kecheng Zhu
    Chengjian Xiao
    Congying Xie
    Xiance Jin
    European Radiology, 2021, 31 : 1022 - 1028
  • [22] Pectoralis muscle predicts distant metastases in breast cancer by deep learning radiomics
    Miao, Shidi
    An, Yunfei
    Liu, Pingping
    Mu, Shikai
    Zhou, Wenjin
    Jia, Haobo
    Huang, Wenjuan
    Li, Jing
    Wang, Ruitao
    ACTA RADIOLOGICA, 2023, 64 (09) : 2561 - 2569
  • [23] Distinguishing pure histopathological growth patterns of colorectal liver metastases on CT using deep learning and radiomics: a pilot study
    Starmans, Martijn P. A.
    Buisman, Florian E.
    Renckens, Michel
    Willemssen, Francois E. J. A.
    van der Voort, Sebastian R.
    Groot Koerkamp, Bas
    Grunhagen, Dirk J.
    Niessen, Wiro J.
    Vermeulen, Peter B.
    Verhoef, Cornelis
    Visser, Jacob J.
    Klein, Stefan
    CLINICAL & EXPERIMENTAL METASTASIS, 2021, 38 (05) : 483 - 494
  • [24] Deep learning radiomics supports perioperative treatment decisions and is associated with LncRNAs in breast cancer: A multicenter study
    Yu, Y.
    Ren, W.
    He, Z.
    Jian, C. Y.
    Tan, Y.
    Mao, L.
    Yao, H.
    ANNALS OF ONCOLOGY, 2022, 33 : S1433 - S1433
  • [25] Personalized prediction of immunotherapy response in lung cancer patients using advanced radiomics and deep learning
    Liao, Chien-Yi
    Chen, Yuh-Min
    Wu, Yu-Te
    Chao, Heng-Sheng
    Chiu, Hwa-Yen
    Wang, Ting-Wei
    Chen, Jyun-Ru
    Shiao, Tsu-Hui
    Lu, Chia-Feng
    CANCER IMAGING, 2024, 24 (01)
  • [26] Multiscale deep learning radiomics for predicting recurrence-free survival in pancreatic cancer: A multicenter study
    Gu, Qianbiao
    Sun, Huiling
    Liu, Peng
    Hu, Xiaoli
    Yang, Jiankang
    Chen, Yong
    Xing, Yan
    RADIOTHERAPY AND ONCOLOGY, 2025, 205
  • [27] Distinguishing pure histopathological growth patterns of colorectal liver metastases on CT using deep learning and radiomics: a pilot study
    Martijn P. A. Starmans
    Florian E. Buisman
    Michel Renckens
    François E. J. A. Willemssen
    Sebastian R. van der Voort
    Bas Groot Koerkamp
    Dirk J. Grünhagen
    Wiro J. Niessen
    Peter B. Vermeulen
    Cornelis Verhoef
    Jacob J. Visser
    Stefan Klein
    Clinical & Experimental Metastasis, 2021, 38 : 483 - 494
  • [28] Image Based Lung Cancer Phenotyping with Deep-Learning Radiomics
    Chaunzwa, T.
    Xu, Y.
    Mak, R.
    Christiani, D.
    Lanuti, M.
    Shafer, A.
    Dia, N.
    Aerts, H.
    MEDICAL PHYSICS, 2018, 45 (06) : E165 - E165
  • [29] Deep learning-based radiomics: pacing immunotherapy in lung cancer
    Sverzellati, Nicola
    Marrocchio, Cristina
    LANCET DIGITAL HEALTH, 2023, 5 (07): : e396 - e397
  • [30] Deep Learning Features Improve the Performance of a Radiomics Signature for Predicting KRAS Status in Patients with Colorectal Cancer
    Wu, Xiaomei
    Li, Yajun
    Chen, Xin
    Huang, Yanqi
    He, Lan
    Zhao, Ke
    Huang, Xiaomei
    Zhang, Wen
    Huang, Yucun
    Li, Yexing
    Dong, Mengyi
    Huang, Jia
    Xia, Ting
    Liang, Changhong
    Liu, Zaiyi
    ACADEMIC RADIOLOGY, 2020, 27 (11) : E254 - E262