Composing atomic transition metal sites for high-performance bifunctional oxygen electrocatalysis in rechargeable zinc-air batteries

被引:17
|
作者
Wang, Juan [1 ,2 ]
Zhao, Chang-Xin [3 ]
Liu, Jia-Ning [3 ]
Ren, Ding [3 ]
Ma, Xinzhi [4 ]
Li, Bo-Quan [1 ,2 ]
Huang, Jia-Qi [1 ,2 ]
Zhang, Qiang [3 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
[3] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
[4] Harbin Normal Univ, Sch Phys & Elect Engn, Key Lab Photon & Elect Bandgap Mat, Minist Educ, Harbin 150025, Peoples R China
来源
PARTICUOLOGY | 2023年 / 77卷
基金
中国国家自然科学基金;
关键词
Rechargeable zinc -air batteries; Bifunctional oxygen electrocatalysis; Noble -metal -free electrocatalysts; Oxygen reduction reaction; Oxygen evolution reaction; EVOLUTION REACTION; REDUCTION REACTION; DOPED CARBON; CATALYSTS; COORDINATION; DESIGN;
D O I
10.1016/j.partic.2022.09.003
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Rechargeable zinc-air batteries have attracted extensive attention as clean, safe, and high-efficient en-ergy storage devices. However, the oxygen redox reactions at cathode are highly sluggish in kinetics and severely limit the actual battery performance. Atomic transition metal sites demonstrate high electro-catalytic activity towards respective oxygen reduction and evolution, while high bifunctional electro-catalytic activity is seldomly achieved. Herein a strategy of composing atomic transition metal sites is proposed to fabricate high active bifunctional oxygen electrocatalysts and high-performance recharge-able zinc-air batteries. Concretely, atomic Fe and Ni sites are composed based on their respective high electrocatalytic activity on oxygen reduction and evolution. The composite electrocatalyst demonstrates high bifunctional electrocatalytic activity (DE = 0.72 V) and exceeds noble-metal-based Pt/C + Ir/C (DE = 0.79 V). Accordingly, rechargeable zinc-air batteries with the composite electrocatalyst realize over 100 stable cycles at 25 mA cm-2. This work affords an effective strategy to fabricate bifunctional oxygen electrocatalysts for high-performance rechargeable zinc-air batteries. (c) 2022 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
引用
下载
收藏
页码:146 / 152
页数:7
相关论文
共 50 条
  • [41] Edge atomic Fe sites decorated porous graphitic carbon as an efficient bifunctional oxygen catalyst for Zinc-air batteries
    Ruihui Gan
    Yali Wang
    Xiangwu Zhang
    Yan Song
    Jingli Shi
    Chang Ma
    Journal of Energy Chemistry, 2023, (08) : 602 - 611
  • [42] Regulation of Atomic Fe-Spin State by Crystal Field and Magnetic Field for Enhanced Oxygen Electrocatalysis in Rechargeable Zinc-Air Batteries
    Wang, Yibo
    Meng, Pengyu
    Yang, Zhaohui
    Jiang, Min
    Yang, Jian
    Li, Huanxin
    Zhang, Jiao
    Sun, Baode
    Fu, Chaopeng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (28)
  • [43] Mutual Self-Regulation of d-Electrons of Single Atoms and Adjacent Nanoparticles for Bifunctional Oxygen Electrocatalysis and Rechargeable Zinc-Air Batteries
    Sundaram Chandrasekaran
    Rong Hu
    Lei Yao
    Lijun Sui
    Yongping Liu
    Amor Abdelkader
    Yongliang Li
    Xiangzhong Ren
    Libo Deng
    Nano-Micro Letters, 2023, 15
  • [44] Nitrogen-doped strategy derived Co3O4/carbon nanosheets as high-performance oxygen electrocatalysis for rechargeable zinc-air batteries application
    Liu, Zhiwei
    Cao, Yali
    Wang, Shuting
    Lu, Zhenjiang
    Hu, Jindou
    Xie, Jing
    Hao, Aize
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 965
  • [45] Mutual Self-Regulation of d-Electrons of Single Atoms and Adjacent Nanoparticles for Bifunctional Oxygen Electrocatalysis and Rechargeable Zinc-Air Batteries
    Chandrasekaran, Sundaram
    Hu, Rong
    Yao, Lei
    Sui, Lijun
    Liu, Yongping
    Abdelkader, Amor
    Li, Yongliang
    Ren, Xiangzhong
    Deng, Libo
    NANO-MICRO LETTERS, 2023, 15 (01)
  • [46] Manganese Oxide Catalyst Grown on Carbon Paper as an Air Cathode for High-Performance Rechargeable Zinc-Air Batteries
    Sumboja, Afriyanti
    Ge, Xiaoming
    Goh, F. W. Thomas
    Li, Bing
    Geng, Dongsheng
    Hor, T. S. Andy
    Zong, Yun
    Liu, Zhaolin
    CHEMPLUSCHEM, 2015, 80 (08): : 1341 - 1346
  • [47] Hierarchical porous Fe/Ni-based bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries
    Ricciardi, Beatrice
    Freitas, Williane da Silva
    Mecheri, Barbara
    Nisa, Khair Un
    Montero, Jorge
    Ficca, Valerio C. A.
    Placidi, Ernesto
    Alegre, Cinthia
    D'Epifanio, Alessandra
    CARBON, 2024, 219
  • [48] A metal and nitrogen doped carbon composite with both oxygen reduction and evolution active sites for rechargeable zinc-air batteries
    Fang, Jinjie
    Zhang, Xuejiang
    Wang, Xingdong
    Liu, Di
    Xue, Yanrong
    Xu, Zhiyuan
    Zhang, Yufeng
    Song, Chun
    Zhu, Wei
    Zhuang, Zhongbin
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (31) : 15752 - 15759
  • [49] 3D Ordered Mesoporous Bifunctional Oxygen Catalyst for Electrically Rechargeable Zinc-Air Batteries
    Park, Moon Gyu
    Lee, Dong Un
    Seo, Min Ho
    Cano, Zachary Paul
    Chen, Zhongwei
    SMALL, 2016, 12 (20) : 2707 - 2714
  • [50] Co/Ce-MOF-Derived Oxygen Electrode Bifunctional Catalyst for Rechargeable Zinc-Air Batteries
    Wu, Kang
    Wang, Daomiao
    Fu, Qiming
    Xu, Tao
    Xiong, Qiang
    Peera, Shaik Gouse
    Liu, Chao
    INORGANIC CHEMISTRY, 2024, 63 (24) : 11135 - 11145