Composing atomic transition metal sites for high-performance bifunctional oxygen electrocatalysis in rechargeable zinc-air batteries

被引:17
|
作者
Wang, Juan [1 ,2 ]
Zhao, Chang-Xin [3 ]
Liu, Jia-Ning [3 ]
Ren, Ding [3 ]
Ma, Xinzhi [4 ]
Li, Bo-Quan [1 ,2 ]
Huang, Jia-Qi [1 ,2 ]
Zhang, Qiang [3 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
[3] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
[4] Harbin Normal Univ, Sch Phys & Elect Engn, Key Lab Photon & Elect Bandgap Mat, Minist Educ, Harbin 150025, Peoples R China
来源
PARTICUOLOGY | 2023年 / 77卷
基金
中国国家自然科学基金;
关键词
Rechargeable zinc -air batteries; Bifunctional oxygen electrocatalysis; Noble -metal -free electrocatalysts; Oxygen reduction reaction; Oxygen evolution reaction; EVOLUTION REACTION; REDUCTION REACTION; DOPED CARBON; CATALYSTS; COORDINATION; DESIGN;
D O I
10.1016/j.partic.2022.09.003
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Rechargeable zinc-air batteries have attracted extensive attention as clean, safe, and high-efficient en-ergy storage devices. However, the oxygen redox reactions at cathode are highly sluggish in kinetics and severely limit the actual battery performance. Atomic transition metal sites demonstrate high electro-catalytic activity towards respective oxygen reduction and evolution, while high bifunctional electro-catalytic activity is seldomly achieved. Herein a strategy of composing atomic transition metal sites is proposed to fabricate high active bifunctional oxygen electrocatalysts and high-performance recharge-able zinc-air batteries. Concretely, atomic Fe and Ni sites are composed based on their respective high electrocatalytic activity on oxygen reduction and evolution. The composite electrocatalyst demonstrates high bifunctional electrocatalytic activity (DE = 0.72 V) and exceeds noble-metal-based Pt/C + Ir/C (DE = 0.79 V). Accordingly, rechargeable zinc-air batteries with the composite electrocatalyst realize over 100 stable cycles at 25 mA cm-2. This work affords an effective strategy to fabricate bifunctional oxygen electrocatalysts for high-performance rechargeable zinc-air batteries. (c) 2022 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
引用
下载
收藏
页码:146 / 152
页数:7
相关论文
共 50 条
  • [21] Novel configuration of bifunctional air electrodes for rechargeable zinc-air batteries
    Li, Po-Chieh
    Chien, Yu-Ju
    Hu, Chi-Chang
    JOURNAL OF POWER SOURCES, 2016, 313 : 37 - 45
  • [22] A Metal-Amino Acid Complex-Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Zinc-Air Batteries
    Ding, Yanjun
    Niu, Yuchen
    Yang, Jia
    Ma, Liang
    Liu, Jianguo
    Xiong, Yujie
    Xu, Hangxun
    SMALL, 2016, 12 (39) : 5414 - 5421
  • [23] Leaf-like Multiphase Metal Phosphides as Bifunctional Oxygen Electrocatalysts toward Rechargeable Zinc-Air Batteries
    Sun, Boshan
    Zhang, Wenping
    Zheng, Miaomiao
    Meng, Jianfang
    Liu, Lei
    Ma, Guanshui
    Yao, Qifeng
    Wang, Mei
    INORGANIC CHEMISTRY, 2024, 63 (39) : 18162 - 18172
  • [24] Research progress in transition metal oxide based bifunctional electrocatalysts for aqueous electrically rechargeable zinc-air batteries
    Mechili, Maria
    Vaitsis, Christos
    Argirusis, Nikolaos
    Pandis, Pavlos K.
    Sourkouni, Georgia
    Argirusis, Christos
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 156
  • [25] P-Bridging Asymmetry Diatomic Catalysts Sites Drive Efficient Bifunctional Oxygen Electrocatalysis for Zinc-Air Batteries
    Wang, Nan
    Mei, Riguo
    Chen, Liqiong
    Yang, Tao
    Chen, Zhongwei
    Lin, Xidong
    Liu, Qingxia
    SMALL, 2024, 20 (32)
  • [26] Tailoring Metal-Oxygen Bonds Boosts Oxygen Reaction Kinetics for High-Performance Zinc-Air Batteries
    Ye, Changchun
    Cheng, Hongfei
    Zheng, Lirong
    Lin, Jiajin
    Xu, Qingshuai
    Qiu, Yongfu
    Pan, Zhenghui
    Qiu, Yongcai
    NANO LETTERS, 2023, 23 (04) : 1573 - 1581
  • [27] Cu/S-Occupation Bifunctional Oxygen Catalysts for Advanced Rechargeable Zinc-Air Batteries
    Wang, Xu
    Peng, Luwei
    Xu, Nengneng
    Wu, Mingjie
    Wang, Yongxia
    Guo, Jianing
    Sun, Shuhui
    Qiao, Jinli
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (47) : 52836 - 52844
  • [28] Rational design of advanced oxygen electrocatalysts for high-performance zinc-air batteries
    Han, Ying
    Zhou, Chenhui
    Wang, Baoshun
    Li, Yunrui
    Zhang, Longgui
    Zhang, Wenshuo
    Huang, Ya
    Zhang, Rufan
    CHEM CATALYSIS, 2022, 2 (12): : 3357 - 3394
  • [29] Metal-organic framework based bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries: current progress and prospects
    Li, Yanqiang
    Cui, Ming
    Yin, Zehao
    Chen, Siru
    Ma, Tingli
    CHEMICAL SCIENCE, 2020, 11 (43) : 11646 - 11671
  • [30] Tuning active sites for highly efficient bifunctional oxygen electrocatalysts of rechargeable zinc-air battery
    Li, Xuhui
    Liu, Yanpin
    Xu, Haifei
    Zhou, Yangfan
    Chen, Xinbing
    An, Zhongwei
    Chen, Yu
    Chen, Pei
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 640 : 549 - 557