Compressive properties of cementitious composites reinforced by 3D printed PA 6 lattice

被引:13
|
作者
Hao, Wenfeng [1 ]
Liu, Junwei [2 ]
Kanwal, Humaira [2 ]
机构
[1] Yangzhou Univ, Coll Mech Engn, Yangzhou 225127, Jiangsu, Peoples R China
[2] Jiangsu Univ, Fac Civil Engn & Mech, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
3D printing; Lattice-reinforced cementitious composites; Digital image correlation (DIC); Acoustic emission (AE); Compressive properties; BEHAVIOR; DESIGN;
D O I
10.1016/j.polymertesting.2022.107811
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The lattice-reinforced cementitious composites prepared by placing 3D printed lattices in cementitious matrix has been proved to be effective in improving the bending mechanical properties of cement-based materials, such as improving ductility and brittleness. However, the compressive properties of 3D printed lattice-reinforced cementitious composites are still an open question. In this paper, the compressive properties of 3D printed polyamide 6 (PA6) lattice-reinforced cementitious composites with different structural forms were studies. Six kinds of lattices were fabricated by multi jet fusion (MJF) technique. The volumes of these lattices are identical to ensure that the volume enhancement ratio of the lattices in the cementitious composite specimen is the same. The plain cementitious matrix without lattice was set as the control group, and two nondestructive testing methods, AE and DIC, were used to compare the compressive properties between plain cementitious matrix and lattice-reinforced cementitious composites with different structural forms. The experimental results show that the 3D printed lattice can significantly improve the mechanical properties and failure modes of cement-based materials under uniaxial compression. In contrast, the six lattice forms used in this study can improve the maximum compressive bearing capacity and deformation capacity of the cement-based materials under uniaxial compression test, and reduce the damage of cement-based materials in the elastic deformation stage. This paper confirms that 3D printed lattices can improve the compressive properties of cement-based materials and provide a new method for improving the compressive strength of cement-based materials. At the same time, it provides new ideas for the development of ideal substitutes for steel bars in corrosive environments, energy conservation and emission reduction and the development of green buildings.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Effect of process parameters on properties of 3D printed continuous fiber reinforced thermoplastic composites
    Chen, Wei
    Zhang, Qiuju
    Yuan, Ye
    Chen, Xiaoyan
    He, Qinghao
    RAPID PROTOTYPING JOURNAL, 2023, 29 (06) : 1121 - 1137
  • [32] Performance and macrostructural characterization of 3D printed steel fiber reinforced cementitious materials
    Giwa, Ilerioluwa
    Game, Daniel
    Ahmed, Hassan
    Noorvand, Hassan
    Arce, Gabriel
    Hassan, Marwa
    Kazemian, Ali
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 369
  • [33] EFFECT OF FIBER REINFORCED POLYMER ON MECHANICAL PERFORMANCE OF 3D PRINTED CEMENTITIOUS MATERIAL
    Lim, Jian Hui
    Li, Mingyang
    Weng, Yiwei
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING, 2018, : 44 - 49
  • [34] Mechanical behavior of FRP sheets reinforced 3D elements printed with cementitious materials
    Feng, Peng
    Meng, Xinmiao
    Zhang, Hanqing
    COMPOSITE STRUCTURES, 2015, 134 : 331 - 342
  • [35] Workability and hardened properties of 3D printed engineered cementitious composites incorporating recycled sand and PE fibers
    Bai, Meiyan
    Wu, Yuching
    Xiao, Jianzhuang
    Ding, Tao
    Yu, Kequan
    JOURNAL OF BUILDING ENGINEERING, 2023, 71
  • [36] Maximizing the Performance of 3D Printed Fiber-Reinforced Composites
    Kabir, S. M. Fijul
    Mathur, Kavita
    Seyam, Abdel-Fattah M.
    JOURNAL OF COMPOSITES SCIENCE, 2021, 5 (05):
  • [37] 3D printed fiber reinforced polymer composites - Structural analysis
    Mohammadizadeh, M.
    Imeri, A.
    Fidan, I
    Elkelany, M.
    COMPOSITES PART B-ENGINEERING, 2019, 175
  • [38] Hardening properties and microstructure of 3D printed engineered cementitious composites based on limestone calcined clay cement
    Wang, Yuting
    Chen, Meng
    Zhang, Tong
    Zhang, Mingzhong
    CEMENT & CONCRETE COMPOSITES, 2024, 152
  • [39] Enhancing mechanical properties of 3D printed cementitious composites utilizing hybrid recycled PP and PET fibers
    Nasr, Ahmed
    Duan, Zhenhua
    Singh, Amardeep
    Yang, Min
    Zou, Shuai
    Arab, Mohammed Abd El-Salam
    Construction and Building Materials, 2024, 455
  • [40] 3D printed carbon fiber reinforced thermoplastic composites: A review
    Dixit, Nidhi
    Jain, Prashant K.
    MATERIALS TODAY-PROCEEDINGS, 2021, 43 : 678 - 681