Performance and macrostructural characterization of 3D printed steel fiber reinforced cementitious materials

被引:21
|
作者
Giwa, Ilerioluwa [1 ]
Game, Daniel [1 ]
Ahmed, Hassan [1 ]
Noorvand, Hassan [1 ]
Arce, Gabriel [2 ]
Hassan, Marwa [1 ]
Kazemian, Ali [1 ,3 ]
机构
[1] Louisiana State Univ, Bert S Turner Dept Construction Management, Baton Rouge, LA 70803 USA
[2] Virginia Transportat Res Council, Charlottesville, VA USA
[3] Louisiana State Univ, Div Elect & Comp Engn, Baton Rouge, LA 70803 USA
关键词
Construction 3D printing; Steel fiber reinforced mixture; Printability; Mechanical properties; Rheology; Fiber orientation; MECHANICAL-PROPERTIES; CONCRETE; CONSTRUCTION; LIMESTONE; ORIENTATION; THIXOTROPY; RHEOLOGY; BEHAVIOR; POWDER;
D O I
10.1016/j.conbuildmat.2023.130593
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The widespread adoption of Construction 3D Printing (C3DP) for structural applications has been hindered by the lack of seamless integration of reinforcement into the automated layering process. Incorporating steel fibers into the printing material could eliminate technical complexities associated with other proposed reinforcement methods for C3DP. This study investigates the fresh and hardened-state properties of printing mixtures including different dosages of steel fibers, especially high dosages which have not been investigated before. This study also considers the effects of other parameters such as sand-to-powder ratio and the limestone content on the properties of steel fiber reinforced printing materials, to reduce the Portland cement content which has a high carbon footprint. The obtained experimental results revealed that high-performance materials incorporating up to 2.5% steel fibers (by volume) can be successfully 3D printed. The mechanical properties of the reinforced mixtures improved significantly at high fiber dosages (2% and 2.5% vol.). The CT-scan results reveal that the orientation and alignment degree of steel fibers in the composite is affected by different parameters such as the binder content and nozzle design. Based on the significant improvement in the tensile properties reported in this study (e.g. up to 148% increase in tensile strength), incorporating high dosages of steel fibers can be an effective C3DP reinforcement technique for structural applications.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Microstructural Characterization of 3D Printed Cementitious Materials
    Van Der Putten, Jolien
    Deprez, Maxim
    Cnudde, Veerle
    De Schutter, Geert
    Van Tittelboom, Kim
    [J]. MATERIALS, 2019, 12 (18)
  • [2] EFFECT OF FIBER REINFORCED POLYMER ON MECHANICAL PERFORMANCE OF 3D PRINTED CEMENTITIOUS MATERIAL
    Lim, Jian Hui
    Li, Mingyang
    Weng, Yiwei
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING, 2018, : 44 - 49
  • [3] Impact behaviour of 3D printed fiber reinforced cementitious composite beams
    Pan, Jinlong
    Ping, Pengxin
    Ding, Boyin
    Zhu, Binrong
    Lin, Yuanzheng
    Ukrainczyk, Neven
    Zhang, Hong
    Cai, Jingming
    [J]. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2024, 182
  • [4] Mechanical behavior of FRP sheets reinforced 3D elements printed with cementitious materials
    Feng, Peng
    Meng, Xinmiao
    Zhang, Hanqing
    [J]. COMPOSITE STRUCTURES, 2015, 134 : 331 - 342
  • [5] Photocatalysis of functionalised 3D printed cementitious materials
    Zahabizadeh, Behzad
    Segundo, Iran Rocha
    Pereira, Jose
    Freitas, Elisabete
    Camoes, Aires
    Teixeira, Vasco
    Costa, Manuel F. M.
    Cunha, Vitor M. C. F.
    Carneiro, Joaquim O.
    [J]. JOURNAL OF BUILDING ENGINEERING, 2023, 70
  • [6] Maximizing the Performance of 3D Printed Fiber-Reinforced Composites
    Kabir, S. M. Fijul
    Mathur, Kavita
    Seyam, Abdel-Fattah M.
    [J]. JOURNAL OF COMPOSITES SCIENCE, 2021, 5 (05):
  • [7] Thermal and Mechanical Characterization of 3D Printed Continuous Fiber Reinforced Composites
    Abbott, Andrew C.
    Furmanski, Jevan
    Tandon, G. P.
    Koerner, Hilmar
    Butcher, Dennis
    [J]. SAMPE JOURNAL, 2023, 59 (06) : 20 - 30
  • [8] Mechanical characterization of 3D printed polymers for fiber reinforced polymers processing
    Tuerk, Daniel-Alexander
    Brenni, Franco
    Zogg, Markus
    Meboldt, Mirko
    [J]. MATERIALS & DESIGN, 2017, 118 : 256 - 265
  • [9] Effect of directionally distributed steel fiber on static and dynamic properties of 3D printed cementitious composite
    Zhou, Jiehang
    Lai, Jianzhong
    Du, Longyu
    Wu, Kai
    Dong, Saiyang
    [J]. CONSTRUCTION AND BUILDING MATERIALS, 2022, 318
  • [10] Mechanical characterization of 3D printed continuous carbon fiber reinforced thermoplastic composites
    Li, Lijun
    Liu, Wenyao
    Sun, Lingyu
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 227