Understanding the Temporal Dynamics of Coherence and Backscattering Using Sentinel-1 Imagery for Crop-Type Mapping

被引:5
|
作者
Zhao, Qinxin [1 ]
Xie, Qinghua [1 ]
Peng, Xing [1 ]
Lai, Kunyu [1 ]
Wang, Jinfei [2 ]
Fu, Haiqiang [3 ]
Zhu, Jianjun [3 ]
Song, Yang [4 ]
机构
[1] China Univ Geosci, Sch Geog & Informat Engn, Wuhan 430074, Peoples R China
[2] Univ Western Ontario, Dept Geog & Environm, London, ON N6A 5C2, Canada
[3] Cent South Univ, Sch Geosci & Infophys, Changsha 410083, Peoples R China
[4] Zoomlion Smart Agr Co Ltd, Changsha 410205, Peoples R China
基金
中国国家自然科学基金;
关键词
Crops; Coherence; Backscatter; Monitoring; Radar polarimetry; Vegetation mapping; Soil; Agriculture; crop classification; crop monitoring; interferometric coherence; polarimetric backscattering; synthetic aperture radar (SAR); time-series; LAND-COVER CLASSIFICATION; TIME-SERIES; INTERFEROMETRIC COHERENCE; SOIL; COMBINATION;
D O I
10.1109/JSTARS.2024.3373489
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study investigates the application of coherence and backscattering, derived from time-series Sentinel-1 synthetic aperture radar imagery of a crop season (18 scenes with a 12-day revisit cycle), for crop growth monitoring and classification in the agricultural region of Southwestern Ontario, Canada. To fulfill this goal, we initially analyze the temporal behavior of backscattering and coherence for a variety of crops to gain some insights for classification. Second, diverse combinations involving polarization channels, feature types, and image quantities for crop classification are analyzed. The deep analysis of temporal dynamics highlights a stronger correlation between the time-series curves of backscattering and crop growth in comparison to coherence. The VH backscattering and the VV coherence demonstrate a higher sensitivity to the variations in crop growth. The crop mapping results indicate that backscattering produces significantly higher accuracy of crop classification than coherence. Furthermore, the incorporation of coherence features with backscattering can enhance the accuracy, with VV making more pronounced contributions compared to VH. Notably, the most effective classification result is achieved through a scheme that integrates both backscattering coefficients of dual polarization (VV + VH) and the VV coherence, achieving a better overall accuracy of 95.33% and a kappa coefficient of 0.93. This study concludes that the crucial information provided by the temporal variations in backscattering and coherence to improve crop classification accuracy depends on both the polarization channel and crop type, with coherence playing a supplementary role. Our study consolidates the previous work and provides useful insights into the field of crop classification.
引用
收藏
页码:6875 / 6893
页数:19
相关论文
共 50 条
  • [31] Soil salinity mapping using dual-polarized SAR Sentinel-1 imagery
    Taghadosi, Mohammad Mahdi
    Hasanlou, Mahdi
    Eftekhari, Kamran
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (01) : 237 - 252
  • [32] SENSITIVITY OF SENTINEL-1 INTERFEROMETRIC COHERENCE TO CROP STRUCTURE AND SOIL MOISTURE
    Palmisano, Davide
    Satalino, Giuseppe
    Balenzano, Anna
    Bovenga, Fabio
    Mattia, Francesco
    Rinaldi, Michele
    Ruggieri, Sergio
    Skriver, Henning
    Davidson, Malcolm W. J.
    Cartus, Oliver
    Wegmuller, Urs
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 6219 - 6222
  • [33] Crop Type and Land Cover Mapping in Northern Malawi Using the Integration of Sentinel-1, Sentinel-2, and PlanetScope Satellite Data
    Kpienbaareh, Daniel
    Sun, Xiaoxuan
    Wang, Jinfei
    Luginaah, Isaac
    Bezner Kerr, Rachel
    Lupafya, Esther
    Dakishoni, Laifolo
    REMOTE SENSING, 2021, 13 (04) : 1 - 21
  • [34] Acreage estimation of kharif rice crop using Sentinel-1 temporal SAR data
    Subbarao, Nandepu V. V. S. S. Teja
    Mani, Jugal Kishore
    Shrivastava, Ashish
    Srinivas, K.
    Varghese, A. O.
    SPATIAL INFORMATION RESEARCH, 2021, 29 (04) : 495 - 505
  • [35] Understanding the potentials of early-season crop type mapping by using Landsat-8, Sentinel-1/2, and GF-1/6 data
    Wang, Cong
    Zhang, Xinyu
    Wang, Wenjing
    Wei, Haodong
    Wang, Jiayue
    Li, Zexuan
    Li, Xiuni
    Wu, Hao
    Hu, Qiong
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 224
  • [36] Acreage estimation of kharif rice crop using Sentinel-1 temporal SAR data
    Nandepu V. V. S. S. Teja Subbarao
    Jugal Kishore Mani
    Ashish Shrivastava
    K. Srinivas
    A. O. Varghese
    Spatial Information Research, 2021, 29 : 495 - 505
  • [37] Analyzing Temporal and Spatial Characteristics of Crop Parameters Using Sentinel-1 Backscatter Data
    Harfenmeister, Katharina
    Spengler, Daniel
    Weltzien, Cornelia
    REMOTE SENSING, 2019, 11 (13)
  • [38] Integrating GEDI, Sentinel-2, and Sentinel-1 imagery for tree crops mapping
    Adrah, Esmaeel
    Wong, Jesse Pan
    Yin, He
    REMOTE SENSING OF ENVIRONMENT, 2025, 319
  • [39] Regional Forest Mapping over Mountainous Areas in Northeast China Using Newly Identified Critical Temporal Features of Sentinel-1 Backscattering
    Yu, Haoyang
    Ni, Wenjian
    Zhang, Zhongjun
    Sun, Guoqing
    Zhang, Zhiyu
    REMOTE SENSING, 2020, 12 (09)
  • [40] Crop Water Content of Winter Wheat Revealed with Sentinel-1 and Sentinel-2 Imagery
    Han, Dong
    Liu, Shuaibing
    Du, Ying
    Xie, Xinrui
    Fan, Lingling
    Lei, Lei
    Li, Zhenhong
    Yang, Hao
    Yang, Guijun
    SENSORS, 2019, 19 (18)