Understanding the Temporal Dynamics of Coherence and Backscattering Using Sentinel-1 Imagery for Crop-Type Mapping

被引:5
|
作者
Zhao, Qinxin [1 ]
Xie, Qinghua [1 ]
Peng, Xing [1 ]
Lai, Kunyu [1 ]
Wang, Jinfei [2 ]
Fu, Haiqiang [3 ]
Zhu, Jianjun [3 ]
Song, Yang [4 ]
机构
[1] China Univ Geosci, Sch Geog & Informat Engn, Wuhan 430074, Peoples R China
[2] Univ Western Ontario, Dept Geog & Environm, London, ON N6A 5C2, Canada
[3] Cent South Univ, Sch Geosci & Infophys, Changsha 410083, Peoples R China
[4] Zoomlion Smart Agr Co Ltd, Changsha 410205, Peoples R China
基金
中国国家自然科学基金;
关键词
Crops; Coherence; Backscatter; Monitoring; Radar polarimetry; Vegetation mapping; Soil; Agriculture; crop classification; crop monitoring; interferometric coherence; polarimetric backscattering; synthetic aperture radar (SAR); time-series; LAND-COVER CLASSIFICATION; TIME-SERIES; INTERFEROMETRIC COHERENCE; SOIL; COMBINATION;
D O I
10.1109/JSTARS.2024.3373489
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study investigates the application of coherence and backscattering, derived from time-series Sentinel-1 synthetic aperture radar imagery of a crop season (18 scenes with a 12-day revisit cycle), for crop growth monitoring and classification in the agricultural region of Southwestern Ontario, Canada. To fulfill this goal, we initially analyze the temporal behavior of backscattering and coherence for a variety of crops to gain some insights for classification. Second, diverse combinations involving polarization channels, feature types, and image quantities for crop classification are analyzed. The deep analysis of temporal dynamics highlights a stronger correlation between the time-series curves of backscattering and crop growth in comparison to coherence. The VH backscattering and the VV coherence demonstrate a higher sensitivity to the variations in crop growth. The crop mapping results indicate that backscattering produces significantly higher accuracy of crop classification than coherence. Furthermore, the incorporation of coherence features with backscattering can enhance the accuracy, with VV making more pronounced contributions compared to VH. Notably, the most effective classification result is achieved through a scheme that integrates both backscattering coefficients of dual polarization (VV + VH) and the VV coherence, achieving a better overall accuracy of 95.33% and a kappa coefficient of 0.93. This study concludes that the crucial information provided by the temporal variations in backscattering and coherence to improve crop classification accuracy depends on both the polarization channel and crop type, with coherence playing a supplementary role. Our study consolidates the previous work and provides useful insights into the field of crop classification.
引用
收藏
页码:6875 / 6893
页数:19
相关论文
共 50 条
  • [21] An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping
    Song, Xiao-Peng
    Huang, Wenli
    Hansen, Matthew C.
    Potapov, Peter
    SCIENCE OF REMOTE SENSING, 2021, 3
  • [22] Integrating Sentinel-1 SAR and Sentinel-2 optical imagery with a crop structure dynamics model to track crop condition
    Jiao, Xianfeng
    McNairn, Heather
    Yekkehkhany, Bahareh
    Robertson, Laura Dingle
    Ihuoma, Samuel
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (17) : 6509 - 6537
  • [23] Mountain crop monitoring with multitemporal Sentinel-1 and Sentinel-2 imagery
    Notarnicola, C.
    Asam, S.
    Jacob, A.
    Marin, C.
    Rossi, M.
    Stendardi, L.
    2017 9TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2017,
  • [24] Mapping tree species diversity of temperate forests using multi-temporal Sentinel-1 and -2 imagery
    Xi, Yanbiao
    Zhang, Wenmin
    Brandt, Martin
    Tian, Qingjiu
    Fensholt, Rasmus
    SCIENCE OF REMOTE SENSING, 2023, 8
  • [25] MAPPING OF ARCTIC LANDSCAPES USING MULTI-TEMPORAL SENTINEL-1 IMAGERY: A CASE STUDY OF KOTELNY ISLAND
    Baldina, Elena
    Troshko, Ksenia
    7TH INTERNATIONAL CONFERENCE ON CARTOGRAPHY AND GIS, VOLS 1 AND 2, 2018, : 727 - 737
  • [26] Influence of GLCM texture parameters on lithological mapping using Sentinel-1 imagery
    Lu, Yi
    Yang, Changbao
    GEOCARTO INTERNATIONAL, 2024, 39 (01)
  • [27] SINCOHMAP: LAND-COVER AND VEGETATION MAPPING USING MULTI-TEMPORAL SENTINEL-1 INTERFEROMETRIC COHERENCE
    Vicente-Guijalba, F.
    Jacob, A.
    Lopez-Sanchez, J. M.
    Lopez-Martinez, C.
    Duro, J.
    Notarnicola, C.
    Ziolkowski, D.
    Mestre-Quereda, A.
    Pottier, E.
    Mallorqui, J. J.
    Lavalle, M.
    Engdahl, M.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6631 - 6634
  • [28] Synergistic Use of Radar Sentinel-1 and Optical Sentinel-2 Imagery for Crop Mapping: A Case Study for Belgium
    Van Tricht, Kristof
    Gobin, Anne
    Gilliams, Sven
    Piccard, Isabelle
    REMOTE SENSING, 2018, 10 (10)
  • [29] CROP HEIGHT ESTIMATION OF WHEAT USING SENTINEL-1 SATELLITE IMAGERY: PRELIMINARY RESULTS
    Narin, O. G.
    Bayik, C.
    Sekertekin, A.
    Madenoglu, S.
    Pinar, M. O.
    Abdikan, S.
    Sanli, F. Balik
    8TH INTERNATIONAL CONFERENCE ON GEOINFORMATION ADVANCES, GEOADVANCES 2024, VOL. 48-4, 2024, : 267 - 273
  • [30] The Relationship Between the Multi-Temporal Sentinel-1 Backscattering and the Snow Melting Dynamics in Alpine Regions
    Carlo, Marin
    Giacomo, Bertoldi
    Valentina, Premier
    Mattia, Christian
    Christian, Brida
    Kerstin, Hurkamp
    Jochen, Tschiersch
    Zebisch, Marc
    Claudia, Notarnicola
    2019 13TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2019,